期刊论文详细信息
BMC Cancer
Age dependence of tumor genetics in unfavorable neuroblastoma: arrayCGH profiles of 34 consecutive cases, using a Swedish 25-year neuroblastoma cohort for validation
Cihan Cetinkaya6  Tommy Martinsson5  Johanna Sandgren1  Catarina Träger2  Per Kogner2  Jan Dumanski4  Teresita Díaz de Ståhl1  Fredrik Hedborg3 
[1] Department of Oncology-Pathology, Cancer Center Karolinska, CCK R8:04, Karolinska Institutet, Stockholm, SE-171 76,, Sweden
[2] Department of Women’s and Children’s Health, Childhood Cancer Research Unit, Karolinska Institutet, Karolinska Hospital, Stockholm, SE 171 76, Sweden
[3] Department of Women’s and Children’s Health, Uppsala University, University Hospital, Uppsala SE-751 85, Sweden
[4] Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala SE-751 85, Sweden
[5] Department of Clinical Genetics, Institute of Biomedicine, University of Gothenburg, Sahlgrenska Hospital, Göteborg, SE-413 45, Sweden
[6] Department of Surgical Sciences, Endocrine Unit, Uppsala University, University Hospital, Uppsala, SE-751 85, Sweden
关键词: Age;    Amplification;    Loss;    Gain;    DNA copy number;    Arraycgh;    Neuroblastoma;    Unfavorable;    High-risk;   
Others  :  1079760
DOI  :  10.1186/1471-2407-13-231
 received in 2012-05-14, accepted in 2013-04-23,  发布年份 2013
PDF
【 摘 要 】

Background

Aggressive neuroblastoma remains a significant cause of childhood cancer death despite current intensive multimodal treatment protocols. The purpose of the present work was to characterize the genetic and clinical diversity of such tumors by high resolution arrayCGH profiling.

Methods

Based on a 32K BAC whole-genome tiling path array and using 50-250K Affymetrix SNP array platforms for verification, DNA copy number profiles were generated for 34 consecutive high-risk or lethal outcome neuroblastomas. In addition, age and MYCN amplification (MNA) status were retrieved for 112 unfavorable neuroblastomas of the Swedish Childhood Cancer Registry, representing a 25-year neuroblastoma cohort of Sweden, here used for validation of the findings. Statistical tests used were: Fisher’s exact test, Bayes moderated t-test, independent samples t-test, and correlation analysis.

Results

MNA or segmental 11q loss (11q-) was found in 28/34 tumors. With two exceptions, these aberrations were mutually exclusive. Children with MNA tumors were diagnosed at significantly younger ages than those with 11q- tumors (mean: 27.4 vs. 69.5 months; p=0.008; n=14/12), and MNA tumors had significantly fewer segmental chromosomal aberrations (mean: 5.5 vs. 12.0; p<0.001). Furthermore, in the 11q- tumor group a positive correlation was seen between the number of segmental aberrations and the age at diagnosis (Pearson Correlation 0.606; p=0.037). Among nonMNA/non11q- tumors (n=6), one tumor displayed amplicons on 11q and 12q and three others bore evidence of progression from low-risk tumors due to retrospective evidence of disease six years before diagnosis, or due to tumor profiles with high proportions of numerical chromosomal aberrations. An early age at diagnosis of MNA neuroblastomas was verified by registry data, with an average of 29.2 months for 43 cases that were not included in the present study.

Conclusion

MNA and segmental 11q loss define two major genetic variants of unfavorable neuroblastoma with apparent differences in their pace of tumor evolution and in genomic integrity. Other possible, but less common, routes in the development of aggressive tumors are progression of low-risk infant-type lesions, and gene amplifications other than MYCN. Knowledge on such nosological diversity of aggressive neuroblastoma might influence future strategies for therapy.

【 授权许可】

   
2013 Cetinkaya et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141202201806480.pdf 1844KB PDF download
Figure 6. 66KB Image download
Figure 5. 23KB Image download
Figure 4. 49KB Image download
Figure 3. 28KB Image download
Figure 2. 164KB Image download
Figure 1. 118KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Brodeur GM: Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 2003, 3(3):203-216.
  • [2]Maris JM: Recent advances in neuroblastoma. N Engl J Med 2010, 362(23):2202-2211.
  • [3]Park JR, Eggert A, Caron H: Neuroblastoma: biology, prognosis, and treatment. Hematol Oncol Clin North Am 2010, 24(1):65-86.
  • [4]Franks LM, Bollen A, Seeger RC, Stram DO, Matthay KK: Neuroblastoma in adults and adolescents: an indolent course with poor survival. Cancer 1997, 79(10):2028-2035.
  • [5]Polishchuk AL, Dubois SG, Haas-Kogan D, Hawkins R, Matthay KK: Response, survival, and toxicity after iodine-131-metaiodobenzylguanidine therapy for neuroblastoma in preadolescents, adolescents, and adults. Cancer 2011, 117(18):4286-4293.
  • [6]Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM: Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 1984, 224(4653):1121-1124.
  • [7]Janoueix-Lerosey I, Schleiermacher G, Michels E, Mosseri V, Ribeiro A, Lequin D, Vermeulen J, Couturier J, Peuchmaur M, Valent A: Overall genomic pattern is a predictor of outcome in neuroblastoma. J Clin Oncol 2009, 27(7):1026-1033.
  • [8]Attiyeh EF, London WB, Mosse YP, Wang Q, Winter C, Khazi D, McGrady PW, Seeger RC, Look AT, Shimada H: Chromosome 1p and 11q deletions and outcome in neuroblastoma. N Engl J Med 2005, 353(21):2243-2253.
  • [9]Spitz R, Hero B, Simon T, Berthold F: Loss in chromosome 11q identifies tumors with increased risk for metastatic relapses in localized and 4S neuroblastoma. Clinical cancer research : an official journal of the American Association for Cancer Research 2006, 12(11 Pt 1):3368-3373.
  • [10]Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, Faldum A, Hero B, Iehara T, Machin D: The international neuroblastoma risk group (INRG) classification system: an INRG task force report. J Clin Oncol 2009, 27(2):289-297.
  • [11]Michels E, Vandesompele J, De Preter K, Hoebeeck J, Vermeulen J, Schramm A, Molenaar JJ, Menten B, Marques B, Stallings RL: ArrayCGH-based classification of neuroblastoma into genomic subgroups. Genes Chromosomes Cancer 2007, 46(12):1098-1108.
  • [12]Mosse YP, Diskin SJ, Wasserman N, Rinaldi K, Attiyeh EF, Cole K, Jagannathan J, Bhambhani K, Winter C, Maris JM: Neuroblastomas have distinct genomic DNA profiles that predict clinical phenotype and regional gene expression. Genes Chromosomes Cancer 2007, 46(10):936-949.
  • [13]Schleiermacher G, Janoueix-Lerosey I, Ribeiro A, Klijanienko J, Couturier J, Pierron G, Mosseri V, Valent A, Auger N, Plantaz D: Accumulation of segmental alterations determines progression in neuroblastoma. J Clin Oncol 2010, 28(19):3122-3130.
  • [14]Hedborg F, Lindgren PG, Johansson I, Kogner P, Samuelsson BO, Bekassy AN, Olsen L, Kreuger A, Pahlman S: N-myc gene amplification in neuroblastoma: a clinical approach using ultrasound guided cutting needle biopsies collected at diagnosis. Med Pediatr Oncol 1992, 20(4):292-300.
  • [15]Caren H, Kryh H, Nethander M, Sjoberg RM, Trager C, Nilsson S, Abrahamsson J, Kogner P, Martinsson T: High-risk neuroblastoma tumors with 11q-deletion display a poor prognostic, chromosome instability phenotype with later onset. Proc Natl Acad Sci U S A 2010, 107(9):4323-4328.
  • [16]Diaz De Stahl T, Sandgren J, Piotrowski A, Nord H, Andersson R, Menzel U, Bogdan A, Thuresson AC, Poplawski A, Von Tell D: Profiling of copy number variations (CNVs) in healthy individuals from three ethnic groups using a human genome 32 K BAC-clone-based array. Hum Mutat 2008, 29(3):398-408.
  • [17]Sambrook JFE, Maniatis T: Molecular Cloning; a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.
  • [18]Ameur A, Yankovski V, Enroth S, Spjuth O, Komorowski J: The LCB data warehouse. Bioinformatics 2006, 22(8):1024-1026.
  • [19]Andersson R, Bruder CE, Piotrowski A, Menzel U, Nord H, Sandgren J, Hvidsten TR, Diaz de Stahl T, Dumanski JP, Komorowski J: A segmental maximum a posteriori approach to genome-wide copy number profiling. Bioinformatics 2008, 24(6):751-758.
  • [20]Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP: Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 2002, 30(4):e15.
  • [21]Caren H, Erichsen J, Olsson L, Enerback C, Sjoberg RM, Abrahamsson J, Kogner P, Martinsson T: High-resolution array copy number analyses for detection of deletion, gain, amplification and copy-neutral LOH in primary neuroblastoma tumors: four cases of homozygous deletions of the CDKN2A gene. BMC Genomics 2008, 9:353. BioMed Central Full Text
  • [22]Lastowska M, Viprey V, Santibanez-Koref M, Wappler I, Peters H, Cullinane C, Roberts P, Hall AG, Tweddle DA, Pearson AD: Identification of candidate genes involved in neuroblastoma progression by combining genomic and expression microarrays with survival data. Oncogene 2007, 26(53):7432-7444.
  • [23]Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3:Article3.
  • [24]Benjamini YHY: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 1995, (Ser B 57):289-300.
  • [25]Vandesompele J, Baudis M, De Preter K, Van Roy N, Ambros P, Bown N, Brinkschmidt C, Christiansen H, Combaret V, Lastowska M: Unequivocal delineation of clinicogenetic subgroups and development of a new model for improved outcome prediction in neuroblastoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2005, 23(10):2280-2299.
  • [26]Molenaar JJ, Koster J, Zwijnenburg DA, van Sluis P, Valentijn LJ, van der Ploeg I, Hamdi M, van Nes J, Westerman BA, van Arkel J: Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 2012, 483(7391):589-593.
  • [27]Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011, 144(5):646-674.
  • [28]Fischer M, Bauer T, Oberthur A, Hero B, Theissen J, Ehrich M, Spitz R, Eils R, Westermann F, Brors B: Integrated genomic profiling identifies two distinct molecular subtypes with divergent outcome in neuroblastoma with loss of chromosome 11q. Oncogene 2010, 29(6):865-875.
  • [29]Buckley PG, Alcock L, Bryan K, Bray I, Schulte JH, Schramm A, Eggert A, Mestdagh P, De Preter K, Vandesompele J: Chromosomal and microRNA expression patterns reveal biologically distinct subgroups of 11q- neuroblastoma. Clin Cancer Res 2010, 16(11):2971-2978.
  • [30]Chen QR, Bilke S, Wei JS, Whiteford CC, Cenacchi N, Krasnoselsky AL, Greer BT, Son CG, Westermann F, Berthold F: cDNA array-CGH profiling identifies genomic alterations specific to stage and MYCN-amplification in neuroblastoma. BMC Genomics 2004, 5:70. BioMed Central Full Text
  • [31]Carr J, Bown NP, Case MC, Hall AG, Lunec J, Tweddle DA: High-resolution analysis of allelic imbalance in neuroblastoma cell lines by single nucleotide polymorphism arrays. Cancer Genet Cytogenet 2007, 172(2):127-138.
  • [32]Corvi R, Savelyeva L, Amler L, Handgretinger R, Schwab M: Cytogenetic evolution of MYCN and MDM2 amplification in the neuroblastoma LS tumour and its cell line. Eur J Cancer 1995, 31A(4):520-523.
  • [33]Rudolph G, Schilbach-Stuckle K, Handgretinger R, Kaiser P, Hameister H: Cytogenetic and molecular characterization of a newly established neuroblastoma cell line LS. Hum Genet 1991, 86(6):562-566.
  • [34]Su WT, Alaminos M, Mora J, Cheung NK, La Quaglia MP, Gerald WL: Positional gene expression analysis identifies 12q overexpression and amplification in a subset of neuroblastomas. Cancer Genet Cytogenet 2004, 154(2):131-137.
  • [35]Amati B, Littlewood TD, Evan GI, Land H: The c-Myc protein induces cell cycle progression and apoptosis through dimerization with Max. EMBO J 1993, 12(13):5083-5087.
  文献评价指标  
  下载次数:142次 浏览次数:40次