期刊论文详细信息
BMC Cancer
Impact of breast cancer stage, time from diagnosis and chemotherapy on plasma and cellular biomarkers of hypercoagulability
Mourad Chaari8  Ines Ayadi6  Aurelie Rousseau7  Eleftheria Lefkou5  Patrick Van Dreden4  Fatoumata Sidibe5  Hela Ketatni5  Vassiliki Galea5  Amir Khaterchi5  Racem Bouzguenda6  Mounir Frikha6  Lilia Ghorbal2  Jamel Daoud2  Choumous Kallel6  Martin Quinn5  Joseph Gligorov3  Jean Pierre Lotz3  Mohamed Hatmi1  Ismail Elalamy7  Grigoris T Gerotziafas7 
[1] Département Infection et Epidémiologie, Institut Pasteur, Paris, France
[2] Service de Radiothérapie Carcinologique, Hôpital Universitaire Habib Bourguiba, Sfax, Tunisia
[3] Service d'Oncologie Médicale et de Thérapie Cellulaire, Hôpitaux Universitaires de l'Est-Parisien, Institut Universitaire de Cancérologie, Faculté de Médecine Pierre et Marie Curie, Université Paris VI, APREC, Paris, France
[4] Research and Development, Diagnostica Stago, Gennevilliers, France
[5] Service d’Hématologie Biologique Hôpital Tenon, Hôpitaux Universitaires de l’Est Parisien, Assistance Publique Hôpitaux de Paris, Paris, France
[6] Service de Carcinologie, Hôpital Universitaire Habib Bourguiba, Sfax, Tunisia
[7] INSERM U938, Faculté de Médecine Pierre et Marie Curie, Université Paris VI, Paris, France
[8] Laboratoire d'Hématologie, Hôpital universitaire Habib Bourguiba, Sfax, Tunisia
关键词: Risk assessment model;    D-Dimers;    Microparticles;    Thrombin generation;    Venous thromboembolism;    Breast cancer;   
Others  :  1106788
DOI  :  10.1186/1471-2407-14-991
 received in 2014-04-09, accepted in 2014-11-20,  发布年份 2014
PDF
【 摘 要 】

Background

In breast cancer patients routine thromboprophylaxis is not recommended but individualized risk assessment is encouraged. The incorporation of hypercoagulability biomarkers could increase the sensitivity of risk assessment models (RAM) to identify patients at VTE risk. To this aim we investigated the impact of cancer-related characteristics on hypercoagulability biomarkers.

Methods

Thrombin generation (TG) assessed with the Thrombogramme-Thrombinoscope®, levels of platelet derived microparticles (Pd-MP) assessed with flow cytometry, procoagulant phospholid dependent clotting time (PPL-ct) measured with a clotting assay and D-Dimers (were assessed in a cohort of 62 women with breast cancer and in 30 age matched healthy women.

Results

Patients showed significantly higher TG, Pd-MP, D-Dimers levels and shortened PPL-ct compared to the controls. The PPL-ct was inversely correlated with the levels of Pd-MP, which were increased in 97% of patients. TG and D-Dimers were increased in 76% and 59% of patients respectively. In any stage of the disease TG was significantly increased as compared to the controls. There was no significant difference of TG in patients with local, regional of metastatic stage. There was no significant difference in Pd-MP or Pd-MP/PS+ between the subgroups of patients with local or regional stage of cancer. Patients with metastatic disease had significantly higher levels of Pd-MP and Pd-MP/PS+ compared to those with regional stage. The D-Dimers increased in patients with metastatic stage. In patients on chemotherapy with less than 6 months since diagnosis TG was significantly higher compared to those on chemotherapy who diagnosed in interval > 6 months. Patients with metastatic disease had significantly higher levels of Pd-MP and D-Dimers compared to those with non-metastatic disease.

Conclusion

In breast cancer patients the stage, the time elapsed since the diagnosis and the administration of chemotherapy are determinants of cellular and plasma hypercoagulability. The levels and the procoagulant activity of Pd-MP are interconnected with the biological activity and the overall burden of cancer. TG reflects the procoagulant properties of both breast cancer and chemotherapy in the initial period of cancer diagnosis. Thus the weighted incorporation of the biomarkers of cellular and plasma hypercoagulabilty in RAM for VTE might improve their predictive value.

【 授权许可】

   
2014 Chaari et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150202013409931.pdf 985KB PDF download
Figure 4. 57KB Image download
Figure 3. 50KB Image download
Figure 2. 63KB Image download
Figure 1. 143KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Trousseau A: Phlegmasia Alba Dolens. In Clinique Medicale de l’Hotel Dieu de Paris. Edited by Trousseau A. Paris: Ballier; 1865:654-712.
  • [2]Boulliaud M: De l’oblitération des veins et de son influence sur la formation des hydropisies partielles. Arch Gen Med 1823, 1:188-204.
  • [3]Illtyd J, Matheson N: Thrombophlebitis in Cancer. The Practitioner. 1935.
  • [4]Heit JA, Mohr DN, Silverstein MD, Petterson TM, O'Fallon WM, Melton LJ III: Predictors of recurrence after deep vein thrombosis and pulmonary embolism: a population-based cohort study. Arch Intern Med 2000, 160:761-768.
  • [5]Blom JW, Doggen CJ, Osanto S, Rosendaal FR: Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA 2005, 293:715-722.
  • [6]Cronin-Fenton DP, Søndergaard F, Pedersen LA, Fryzek JP, Cetin K, Acquavella J, Baron JA, Sørensen HT: Hospitalisation for venous thromboembolism in cancer patients and the general population: a population-based cohort study in Denmark, 1997–2006. Br J Cancer 2010, 103:947-953.
  • [7]Buller HR, van Doormaal FF, van Sluis GL, Kamphuisen PW: Cancer and thrombosis: from molecular mechanisms to clinical presentations. J Thromb Haemost 2007, 5:246-254.
  • [8]Zwicker JI, Furie BC, Furie B: Cancer-associated thrombosis. Crit Rev Oncol Hematol 2007, 62:126-136.
  • [9]Ten Cate H, Falanga A: Overview of the postulated mechanisms linking cancer and thrombosis. Pathophysiol Haemost Thromb 2008, 36:122-130.
  • [10]Wun T, White RH: Venous thromboembolism (VTE) in patients with cancer: epidemiology and risk factors. Cancer Invest 2009, 27(Suppl 1):63-74.
  • [11]Lauw MN, van Doormaal FF, Middeldorp S, Buller HR: Cancer and venous thrombosis: current comprehensions and future perspectives. Semin Thromb Hemost 2013, 39:507-514.
  • [12]Chew HK, Wun T, Harve DJ, Zhou H, White RH: Incidence of venous thromboembolism and the impact on survival in breast cancer patients. J Clin Oncol 2007, 25:70-76.
  • [13]Rickles FR, Levine MN: Epidemiology of thrombosis in cancer. Acta Haematol 2001, 106:6-12.
  • [14]Tran BH, Nguyen TJ, Hwang BH, Vidar EN, Davis GB, Chan LS, Woo K, Wong AK: Risk factors associated with venous thromboembolism in 49,028 mastectomy patients. Breast 2013, 22:444-448.
  • [15]Farge D, Debourdeau P, Beckers M, Baglin C, Bauersachs RM, Brenner B, Brilhante D, Falanga A, Gerotziafas GT, Haim N, Kakkar AK, Khorana AA, Lecumberri R, Mandala M, Marty M, Monreal M, Mousa SA, Noble S, Pabinger I, Prandoni P, Prins MH, Qari MH, Streiff MB, Syrigos K, Bounameaux H, Büller HR: International clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer. J Thromb Haemost 2013, 11:56-70.
  • [16]Khorana AA, Kuderer NM, Culakova E, Lyman GH, Francis CW: Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 2008, 111:4902-4907.
  • [17]Schaffner F, Ruf W: Tissue factor and PAR2 signaling in the tumor microenvironment. Arterioscler Thromb Vasc Biol 2009, 29:1999-2004.
  • [18]Nurden AT: Platelets, inflammation and tissue regeneration. Thromb Haemost 2011, 105(Suppl 1):S13-S33.
  • [19]Owens AP 3rd, Mackman N: Microparticles in hemostasis and thrombosis. Circ Res 2011, 108:1284-1297.
  • [20]Rauch U, Nemerson Y: Circulating tissue factor and thrombosis. Curr Opin Hematol 2000, 7:273-277.
  • [21]Butenas S, Orfeo T, Mann KG: Tissue factor activity and function in blood coagulation. Thromb Res 2008, 122(Suppl 1):S42-S46.
  • [22]Ay C, Dunkler D, Pirker R, Thaler J, Quehenberger P, Wagner O, Zielinski C, Pabinger I: High D-dimer levels are associated with poor prognosis in cancer patients. Haematologica 2012, 97:1158-1164.
  • [23]Knowlson L, Bacchu S, Paneesha S, McManus A, Randall K, Rose P: Elevated D-dimers are also a marker of underlying malignancy and increased mortality in the absence of venous thromboembolism. J Clin Pathol 2010, 63:818-822.
  • [24]Ay C, Dunkler D, Marosi C, Chiriac AL, Vormittag R, Simanek R, Quehenberger P, Zielinski C, Pabinger I: Prediction of venous thromboembolism in cancer patients. Blood 2010, 116:5377-5382.
  • [25]Hermanek P, Hutter RVP, Sobin LH, Wagner G, Wittekind C: TNM Atlas. Guide Illustré de la Classification TNM/pTNM des Tumeurs Malignes. 4th edition. Paris: Springer-Verlag France; 1998.
  • [26]Hemker HC, Giesen P, Al Dieri R, Regnault V, de Smedt E, Wagenvoord R, Lecompte T, Béguin S: Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol Haemost Thromb 2003, 33:4-15.
  • [27]Robert S, Poncelet P, Lacroix R, Arnaud L, Giraudo L, Hauchard A, Sampol J, Dignat-George F: Standardization of platelet-derived microparticle counting using calibrated beads and a Cytomics FC500 routine flow cytometer: a first step towards multicenter studies? J Thromb Haemost 2009, 7:190-197.
  • [28]Trappenburg MC, van Schilfgaarde M, Bredewold EO, van Aalderen MC, Spronk HM, Ten Cate H, Leyte A, Terpstra WE: Elevated numbers and altered subsets of procoagulant microparticles in breast cancer patients using endocrine therapy. Thromb Res 2011, 127:363-369.
  • [29]Helley D, Banu E, Bouziane A, Banu A, Scotte F, Fischer AM, Oudard S: Platelet microparticles: a potential predictive factor of survival in hormone-refractory prostate cancer patients treated with docetaxel-based chemotherapy. Eur Urol 2009, 56:479-484.
  • [30]Varon D, Shai E: Role of platelet-derived microparticles in angiogenesis and tumor progression. Discov Med 2009, 8:237-241.
  • [31]Rak J: Microparticles in cancer. Semin Thromb Hemost 2010, 36:888-906.
  • [32]Toth B, Liebhardt S, Steinig K, Ditsch N, Rank A, Bauerfeind I, Spannagl M, Friese K, Reininger AJ: Platelet-derived microparticles and coagulation activation in breast cancer patients. Thromb Haemost 2008, 100:663-669.
  • [33]Tseng CC, Wang CC, Chang HC, Tsai TH, Chang LT, Huang KT, Leu S, Yen CH, Liu SF, Chen CH, Yang CT, Yip HK, Lin MC: Levels of circulating microparticles in lung cancer patients and possible prognostic value. Dis Markers 2013, 35:301-310.
  • [34]Papageorgiou C, Van Dreden P, Marret E, Bonnet F, Robert F, Spyropoulos A, Galea V, Elalamy I, Hatmi M, Gerotziafas G: Lobectomy and postoperative thromboprophylaxis with enoxaparin improve blood hypercoagulability in patients with localized primary lung adenocarcinoma. Thromb Res 2013, 132:584-591.
  • [35]Lechner D, Weltermann A: Chemotherapy-induced thrombosis: a role for microparticles and tissue factor? Semin Thromb Hemost 2008, 34:199-203.
  • [36]Kim HK, Song KS, Park YS, Kang YH, Lee YJ, Lee KR, Kim HK, Ryu KW, Bae JM, Kim S: Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur J Cancer 2003, 39:184-191.
  • [37]Ay C, Dunkler D, Simanek R, Thaler J, Koder S, Marosi C, Zielinski C, Pabinger I: Prediction of venous thromboembolism in patients with cancer by measuring thrombin generation: results from the Vienna cancer and thrombosis study. J Clin Oncol 2011, 29:2099-2103.
  • [38]Pabinger I, Thaler J, Ay C: Biomarkers for prediction of venous thromboembolism in cancer. Blood 2013, 122:2011-2018.
  • [39]Ferroni P, Martini F, Portarena I, Grenga I, Riondino S, La Farina F, Laudisi A, Guadagni F, Roselli M: Early changes of a novel APC-dependent thrombin generation assay during chemotherapy independently predict venous thromboembolism in cancer patients–a pilot study. Support Care Cancer 2012, 20:2713-2720.
  • [40]Roselli M, Ferroni P, Riondino S, Mariotti S, Laudisi A, Vergati M, Cavaliere F, Palmirotta R, Guadagni F: Impact of chemotherapy on activated protein C-dependent thrombin generation–association with VTE occurrence. Int J Cancer 2013, 133:1253-1258.
  • [41]Mukherjee SD, Swystun LL, Mackman N, Wang JG, Pond G, Levine MN, Liaw PC: Impact of chemotherapy on thrombin generation and on the protein C pathway in breast cancer patients. Pathophysiol Haemost Thromb 2010, 37:88-97.
  • [42]Swystun LL, Mukherjee S, Liaw PC: Breast cancer chemotherapy induces the release of cell-free DNA, a novel procoagulant stimulus. J Thromb Haemost 2011, 9:2313-2321.
  • [43]Nijziel MR, van Oerle R, Christella M, Thomassen LG, van Pampus EC, Hamulyák K, Tans G, Rosing J: Acquired resistance to activated protein C in breast cancer patients. Br J Haematol 2003, 120:117-122.
  • [44]Dirix LY, Salgado R, Weytjens R, Colpaert C, Benoy I, Huget P, van Dam P, Prové A, Lemmens J, Vermeulen P: Plasma fibrin D-dimer levels correlate with tumour volume, progression rate and survival in patients with metastatic breast cancer. Br J Cancer 2002, 86:389-395.
  • [45]Palumbo JS, Kombrinck KW, Drew AF, Grimes TS, Kiser JH, Degen JL, Bugge TH: Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood 2000, 96:3302-3309.
  文献评价指标  
  下载次数:40次 浏览次数:22次