期刊论文详细信息
BMC Neuroscience
Multi-target action of the novel anti-Alzheimer compound CHF5074: in vivo study of long term treatment in Tg2576 mice
Luciana Giardino6  Laura Calzà6  Bruno P Imbimbo5  Gino Villetti5  Simone Ottonello1  Arturo R Viscomi2  Maria Francesca Baroc4  Vladimiro Pietrini4  Luca Ferraro7  Chiara Mangano3  Vito Antonio Baldassarro3  Mercedes Fernandez3  Marco Gusciglio6  Alessandro Giuliani8  Luca Lorenzini8  Sandra Sivilia8 
[1] Department of Biosciences, Biochemistry and Molecular Biology Unit, Laboratory of Functional Genomics and Protein Engineering, University of Parma, Parma, Italy;Present address: Microbiological Laboratory, GlaxoSmithKline Manufacturing Spa, Via Asolana 90, Parma, S.Polo di Torrile 43056, Italy;Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara di Sopra 50, Bologna, Ozzano Emilia I-40064, Italy;Department of Neurosciences, Laboratory of Neuropathology, University of Parma, Via Gramsci 14, Parma 43100, Italy;Research & Development, Chiesi Farmaceutici, Via Palermo 26/A, Parma 43100, Italy;IRET Foundation, Via Tolara di Sopra 50, Bologna, Ozzano Emilia 40064, Italy;Department of Life Sciences and biotechnology, University of Ferrara, Via Fossato di Mortara 17–19, Ferrara, Italy;Department of Veterinary Medicine, University of Bologna, Bologna, Italy
关键词: Tg2576 mice;    Dendrite pathology;    CHF5074;    Cell-cycle events;    Alzheimer’s disease;   
Others  :  1140343
DOI  :  10.1186/1471-2202-14-44
 received in 2012-09-10, accepted in 2013-03-14,  发布年份 2013
PDF
【 摘 要 】

Background

Alzheimer disease is a multifactorial disorder characterized by the progressive deterioration of neuronal networks. The pathological hallmarks includes extracellular amyloid plaques and intraneuronal neurofibrillary tangles, but the primary cause is only partially understood. Thus, there is growing interest in developing agents that might target multiple mechanisms leading to neuronal degeneration. CHF5074 is a nonsteroidal anti-inflammatory derivative that has been shown to behave as a γ-secretase modulator in vitro and to inhibit plaque deposition and to reverse memory deficit in vivo in transgenic mouse models of Alzheimer’s disease (AD). In the present study, the effects of a long-term (13-month) treatment with CHF5074 on indicators of brain functionality and neurodegeneration in transgenic AD mice (Tg2576) have been assessed and compared with those induced by a prototypical γ-secretase inhibitor (DAPT).

Results

To this end, plaque-free, 6-month-old Tg2576 mice and wild-type littermates were fed with a diet containing CHF5074 (125 and 375 ppm/day), DAPT (375 ppm/day) or vehicle for 13 months. The measured indicators included object recognition memory, amyloid burden, brain oligomeric and plasma Aβ levels, intraneuronal Aβ, dendritic spine density/morphology, neuronal cyclin A positivity and activated microglia. Tg2576 mice fed with standard diet displayed an impairment of recognition memory. This deficit was completely reverted by the higher dose of CHF5074, while no effects were observed in DAPT-treated mice. Similarly, amyloid plaque burden, microglia activation and aberrant cell cycle events were significantly affected by CHF5074, but not DAPT, treatment. Both CHF5074 and DAPT reduced intraneuronal Aβ content, also increasing Aβ40 and Aβ42 plasma levels.

Conclusions

This comparative analysis revealed a profoundly diverse range of clinically relevant effects differentiating the multifunctional anti-inflammatory derivative CHF5074 from the γ-secretase inhibitor DAPT and highlighted unique mechanisms and potential targets that may be crucial for neuroprotection in mouse models of AD.

【 授权许可】

   
2013 Sivilia et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324220220856.pdf 2769KB PDF download
Figure 6. 123KB Image download
Figure 5. 41KB Image download
Figure 4. 61KB Image download
Figure 3. 49KB Image download
Figure 2. 53KB Image download
Figure 1. 39KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Holtzman DM, Goate A, Kelly J, Sperling R: Mapping the road forward in Alzheimer’s disease. Sci Transl Med 2011, 3:114ps48.
  • [2]Selkoe DJ: Resolving controversies on the path to Alzheimer’s therapeutics. Nature Med 2011, 17:1060-1065.
  • [3]Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M: Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 2010, 9:702-716.
  • [4]Herrup K: Reimagining Alzheimer’s disease – An age-based hypothesis. J Neurosci 2010, 30:16755-16762.
  • [5]Struble RG, Ala T, Patrylo PR, Brewer GJ, Yan XX: Is brain amyloid production a cause or a result of dementia of the Alzheimer’s type? J Alzheimers Dis 2010, 22:393-399.
  • [6]Karran E, Mercken M, De Strooper B: The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nature Rev Drug Discov 2011, 10:698-712.
  • [7]Castellani RJ, Smith MA: Compounding artefacts with uncertainty, and an amyloid cascade hypothesis that is ‘too big to fail’. J Pathol 2011, 224:147-152.
  • [8]Hu X, Crick SL, Bu G, Frieden C, Pappu RV, Lee JM: Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-β peptide. Proc Natl Acad Sci USA 2009, 106:20324-20329.
  • [9]Friedrich RP, Tepper K, Ronicke R, Soom M, Westermann M, Reymann K, Kaether C, Fandrich M: Mechanism of amyloid plaque formation suggests an intracellular basis of Aβ pathogenicity. Proc Natl Acad Sci USA 2010, 107:1942-1947.
  • [10]Gouras GK, Tampellini D, Takahashi RH, Capetillo-Zarate E: Intraneuronal β-amyloid accumulation and synapse pathology in Alxheimer’s disease. Acta Neuropathol 2010, 119:523-541.
  • [11]Spire TL, Hyman BT: Neuronal structure is altered by amyloid plaques. Rev Neurosci 2004, 15:267-278.
  • [12]Spire TL, Meyer-Luehmann M, Stern EA, McLean PJ, Skoch J, Nguyen PT, Bacskai BJ, Hyman BT: Dendritic spine abnormalities in APP transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J Neurosci 2005, 25:7278-7287.
  • [13]Arendt T: Synaptic degeneration in Alzheimer’s disease. Acta Neuropathol 2009, 118:167-179.
  • [14]Bonda DJ, Lee H-P, Kudo W, Zhu X, Smith MA, Lee H-G: Pathological implications of cell cycle re-entry in Alzheimer disease. Expert Rev Mol Med 2010, 12:e19.
  • [15]Bajda M, Guzior N, Ignasik M, Malawska B: Multi-target-directed ligands in Alzheimer’s disease treatment. Curr Med Chem 2011, 18:4949-4975.
  • [16]Nizzari M, Thellung S, Corsaro A, Villa V, Pagano A, Porcile C, Russo C, Florio T: Neuorodegeneration in Alzheimer Disease: Role of Amyloid precursor protein and presinilin 1 intracellular signaling. J Toxicol 2012, 2012:187297.
  • [17]Imbimbo BP, Del Giudice E, Cenacchi V, Volta R, Villetti G, Facchinetti F, Riccardi B, Puccini P, Moretto N, Grassi F, Ottonello S, Leon A: In vitro and in vivo profiling of CHF5022 nd CHF5074 two beta-amyloid 1–42 lowering agents. Pharmacol Res 2007, 55:318-328.
  • [18]Wolfe MS: γ-Secretase inhibitors and modulators for Alzheimer’s disease. J Neurochem 2012, 120(Suppl 1):89-98.
  • [19]Imbimbo BP, Hutter-Paier B, Villetti G, Facchinetti F, Cenacchi V, Volta R, Lanzillotta A, Pizzi M, Windisch M: CHF5074, a novel gamma-secretase modulator, attenuates brain beta-amyloid pathology and learning deficit in a mouse model of Alzheimer’s disease. Br J Pharmacol 2009, 156:982-993.
  • [20]Imbimbo BP, Del Giudice E, Colavito D, D’Arrigo A, Dalle Carbonare M, Villetti G, Facchinetti F, Volta R, Pietrini V, Baroc MF, Serneels L, De Strooper B, Leon A: 1-(3′,4′-Dichloro-2-fluoro[1,1′-biphenyl]-4-yl)-cyclopropanecarboxylic acid (CHF5074), a novel gamma-secretase modulator, reduces brain beta-amyloid pathology in a transgenic mouse model of Alzheimer’s disease without causing peripheral toxicity. J Pharmacol Exp Ther 2007, 323:822-830.
  • [21]Imbimbo BP, Giardino L, Sivilia S, Giuliani A, Gusciglio M, Pietrini V, Del Giudice E, D’Arrigo A, Leon A, Villetti G, Calzà L: CHF5074, a novel gamma-secretase modulator, restores hippocampal neurogenesis potential and reverses contextual memory deficit in a transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis 2010, 20:159-173.
  • [22]Balducci C, Mehdawy B, Mare L, Giuliani A, Lorenzini L, Sivilia S, Giardino L, Calzà L, Lanzillotta A, Sarnico I, Pizzi M, Usiello A, Viscomi AR, Ottonello S, Villetti G, Imbimbo BP, Nisticò G, Forloni G, Nisticò R: The γ-secretase modulator CHF5074 restores memory and hippocampal synaptic plasticity in plaque-free Th2576 mice. J Alzheimers Dis 2011, 24:799-816.
  • [23]Lichtenstein MP, Carriba P, Baltrons MA, Wojciak-Stothard B, Peterson JR, Garcia A, Galea E: Secretase-independent and RhoGTPase/PAK/ERK-dependent regulation of cytoskeleton dynamics in astrocytes by NSAIDs and derivatives. J Alzheimers Dis 2010, 22:1135-1155.
  • [24]Lanz TA, Himes CS, Pallante G, Adams L, Yamazaki S, Amore B, Merchant KM: The gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester reduces A beta levels in vivo in plasma and cerebrospinal fluid in young (plaque-free) and aged (plaque-bearing) Tg2576 mice. J Pharmacol Exp Ther 2003, 305:864-871.
  • [25]Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G: Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 1996, 274:99-102.
  • [26]Dovey HF, John V, Anderson JP, Chen LZ, de Saint Andrieu P, Fang LY, Freedman SB, Folmer B, Goldbach E, Holsztynska EJ, Hu KL, Johnson-Wood KL, Kennedy SL, Kholodenko D, Knops JE, Latimer LH, Lee M, Liao Z, Lieberburg IM, Motter RN, Mutter LC, Nietz J, Quinn KP, Sacchi KL, Seubert PA, Shopp GM, Thorsett ED, Tung JS, Wu J, Yang S, Yin CT, Schenk DB, May PC, Altstiel LD, Bender MH, Boggs LN, Britton TC, Clemens JC, Czilli DL, Dieckman-McGinty DK, Droste JJ, Fuson KS, Gitter BD, Hyslop PA, Johnstone EM, Li WY, Little SP, Mabry TE, Miller FD, Audia JE: Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem 2001, 76:173-181.
  • [27]Paxinos G, Franklin KBJ: The Mouse Brain in Stereotaxic Coordinates. 2nd edition. San Diego: Academic Press; 2001.
  • [28]Middei S, Restivo L, Caprioli A, Aceti M, Ammassari-Teule M: Region-specific changes in the microanatomy of single dendritic spines over time might account for selective memory alterations in ageing hAPPsweTg2576 mice, a mouse model for Alzheimer disease. Neurobiol Learn Mem 2008, 90:467-471.
  • [29]Knafo S, Libersat F, Barkai E: Dynamics of learning-induced spine redistribution along dendrites of pyramidal neurons in rats. Eur J Neurosci 2005, 21:927-935.
  • [30]Varvel NH, Bhaskar K, Kounnas MZ, Wagner SL, Yang Y, Lamb BT, Herrup K: NSAIDs prevent, but do not reverse, neuronal cell cycle reentry in a mouse model of Alzheimer disease. Clin Invest 2009, 119:3692-3702.
  • [31]Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH: A specific amyloid-beta protein assembly in the brain impairs memory. Nature 2006, 440:352-357.
  • [32]Lambert MP, Viola KL, Chromy BA, Chang L, Morgan TE, Yu J, Venton DL, Krafft GA, Finch CE, Klein WL: Vaccination with soluble Abeta oligomers generates toxicity-neutralizing antibodies. J Neurochem 2011, 79:595-605.
  • [33]Aho L, Pikkarainen M, Hiltunen M, Leinonen V, Alafuzoff I: Immunohistochemical visualization of amyloid-beta protein precursor and amyloid-beta in extra- and intracellular compartments in the human brain. J Alzheimer Dis 2010, 20:1015-1028.
  • [34]Imbimbo BP, Ottonello S, Frisardi V, Solfrizzi V, Greco A, Seripa D, Pilotto A, Panza F: Solanezumab for the treatment of mild-to-moderate Alzheimer’s disease. Expert Rev Clin Immunol 2012, 8:135-149.
  • [35]Schor NF: What the halted phase III γ-secretase inhibitor trial may (or may not) be telling us. Ann Neurol 2011, 69:237-239.
  • [36]Mouri A, Noda Y, Hara H, Mizoguchi H, Tabira T, Nabeshima T: Oral vaccination with a viral vector containing Abeta cDNA attenuates age-related Abeta accumulation and memory deficits without causing inflammation in a mouse Alzheimer model. FASEB J 2007, 21:2135-2148.
  • [37]Scholtzova H, Wadghiri YZ, Douadi M, Sigurdsson EM, Li YS, Quartermain D, Banerjee P, Wisniewski T: Memantine leads to behavioral improvement and amyloid reduction in Alzheimer’s-disease-model transgenic mice shown as by micromagnetic resonance imaging. J Neurosci Res 2008, 86:2784-2791.
  • [38]Balducci C, Beeg M, Stravalaci M, Bastone A, Sclip A, Biasini E, Tapella L, Colombo L, Manzoni C, Borsello T, Chiesa R, Gobbi M, Salmona M, Forloni G: Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc Natl Acad Sci USA 2010, 107:2295-2300.
  • [39]Dewachter I, Reversé D, Caluwaerts N, Ris L, Kuipéri C, Van den Haute C, Spittaels K, Umans L, Serneels L, Thiry E, Moechars D, Mercken M, Godaux E, Van Leuven F: Neuronal deficiency of presenilin 1 inhibits amyloid plaque formation and corrects hippocampal long-term potentiation but not a cognitive defect of amyloid precursor protein [V717l] transgenic mice. J Neurosci 2002, 22:3445-3453.
  • [40]Burton CR, Meredith JE, Barten DM, Goldstein ME, Krause CM, Kieras CJ, Sisk L, Iben LG, Polson C, Thompson MW, Lin XA, Corsa J, Fiedler T, Pierdomenico M, Cao Y, Roach AH, Cantone JL, Ford MJ, Drexler DM, Olson RE, Yang MG, Bergstrom CP, McElhone KE, Bronson JJ, Macor JE, Blat Y, Grafstrom RH, Stern AM, Seiffert DA, Zaczek R, Albright CF, Toyn JH: The amyloid-beta rise and gamma-secretase inhibitor potency depend on the level of substrate expression. J Biol Chem 2008, 28:22992-23003.
  • [41]Imbimbo BP, Peretto I: Semagacestat, a γ-secretase inhibitor for the potential treatment of Alzheimer’s disease. Curr Opin Investig Drugs 2009, 10:721-730.
  • [42]D’Andrea MR, Nagele RG, Wang HY, Lee DH: Consistent immunohistochemical detection of intracellular beta-amyloid42 in pyramidal neurons of Alzheimer’s disease. enthorinal cortex. Neurosci Lett 2002, 333:163-166.
  • [43]Lauritzen I, Pardossi-Piquard R, Bauer C, Brigham E, Abraham JD, Ranaldi S, Fraser P, St-George-Hyslop P, Le Thuc O, Espin V, Chami L, Dunys J, Checler F: The β-secretase-derived C-terminal fragment of βAPP, C99, but not Aβ, is a key contributor to early intraneuronal lesions in triple-transgenic mouse hippocampus. J Neurosci 2012, 32:16243-55a.
  • [44]Echeverria V, Cuello AC: Intracellular A-beta amyloid, a sign for worse things to come? Mol Neurobiol 2002, 26:299-316.
  • [45]Hashimoto M, Bogdanovic N, Volkmann I, Aoki M, Winblad B, Tjernberg LO: Analysis of microdissected human neurons by a sensitive ELISA reveals a correlation between elevated intracellular concentrations of Aβ42 and Alzheimer’s disease neuropathology. Acta Neuropathol 2010, 119:543-554.
  • [46]Umeda T, Tomiyama T, Sakama N, Tanaka S, Lambert MP, Klein WL, Mori H: Intraneuronal amyloid β oligomers cause cell death via endoplasmic reticulum stress, endosomal/lysosomal leakage, and mitochondrial dysfunction in vivo. J Neurosci Res 2011, 89:1031-1042.
  • [47]Crews L, Masliah E: Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum Mol Genet 2010, 19:R12-R20.
  • [48]Bramham CR: Local protein synthesis, actin dynamics, and LTP consolidation. Curr Opinion Neurobiol 2008, 18:524-531.
  • [49]Townsend M, Qu Y, Gray A, Wu Z, Seto T, Hutton M, Shearman MS, Middleton RE: Oral treatment with a gamma-secretase inhibitor improves long-term potentiation in a mouse model of Alzheimer’s disease. J Pharmacol Exp Ther 2010, 333:110-119.
  • [50]Takahashi RH, Milner TA, Li F, Nam EE, Edgar MA, Yamaguchi H, Beal MF, Xu H, Greengard P, Gouras GK: Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am J Pathol 2002, 161:1869-1879.
  • [51]Bittner T, Fuhrmann M, Burgold S, Jung CK, Volbracht C, Steiner H, Mitteregger G, Kretzschmar HA, Haass C, Herms J: Gamma-secretase inhibition reduces spine density in vivo via an amyloid precursor protein-dependent pathway. J Neurosci 2009, 29:10405-10409.
  • [52]Lanzillotta A, Sarnico I, Ingrassia R, Boroni F, Branca C, Benarese M, Faraco G, Blasi F, Chiarugi A, Spano P, Pizzi M: The γ-secretase modulator CHF5074 reduces the accumulation of native hyperphosphorylated tau in a transgenic mouse model of Alzheimer’s disease. J Mol Neurosci 2011, 45:22-31.
  • [53]Hook VY, Kindy M, Hook G: Inhibitors of cathepsin B improve memory and reduce beta-amyloid in transgenic Alzheimer disease mice expressing the wild-type, but not the Swedish mutant, beta-secretase site of the amyloid precursor protein. J Biol Chem 2008, 283:7745-7753.
  • [54]Jung CK, Herms J: Role of APP for dendritic spine formation and stability. Exp Brain Res 2012, 217:463-470.
  • [55]Bittner T, Fuhrmann M, Burgold S, Ochs SM, Hoffmann N, Mitteregger G, Kretzschmar H, LaFerla FM, Herms J: Multiple events lead to dendritic spine loss in triple transgenic Alzheimer’s disease mice. PLoS One 2010, 5:e15477.
  • [56]Heneka MT, Kummer MP, Weggen S, Bulic B, Multhaup G, Münter L, Hüll M, Pflanzner T, Pietrzik CU: Molecular mechanisms and therapeutic application of NSAIDs and derived compounds in Alzheimer’s disease. Curr Alzheimer Res 2011, 8:115-131.
  • [57]Ferretti MT, Cuello AC: Does a pro-inflammatory process precede Alzheimer’s disease and mild cognitive impairment? Curr Alzheimer Res 2011, 8:164-174.
  • [58]Yu D, Corbett B, Yan Y, Zhang GX, Reinhart P, Cho SJ, Chin J: Early cerebrovascular inflammation in a transgenic mouse model of Alzheimer’s disease. Neurobiol Aging 2012, PMID:22440674.
  • [59]Nasoohi S, Hemmati AA, Moradi F, Ahmadiani A: The γ-secretase blocker DAPT impairs recovery from lipopolysaccharide-induced inflammation in rat brain. Neurosci 2012, 210:99-109.
  • [60]Saura CA: Presenilin/gamma-Secretase and inflammation. Front Aging Neurosci 2010, 2:16.
  • [61]Arumugam TV, Chan SL, Jo DG, Yilmaz G, Tang SC, Cheng A, Gleichmann M, Okun E, Dixit VD, Chigurupati S, Mughal MR, Ouyang X, Miele L, Magnus T, Poosala S, Granger DN, Mattson MP: Gamma secretase-mediated Notch signaling worsens brain damage and functional outcome in ischemic stroke. Nature Med 2006, 12:621-623.
  • [62]Vincent I, Pae CI, Hallows JL: The cell cycle and human neurodegenerative disease. Prog Cell Cycle Res 2003, 5:31-41.
  • [63]Yang Y, Herrup K: Cell division in the CNS: protective response or lethal event in post-mitotic neurons? Biochim Biophys Acta 2007, 1772:457-466.
  • [64]Lee H-G, Casadesus G, Zhu X, Castellani RJ, McShea A, Perry G, Petersen RB, Bajic V, Smith MA: Cell cycle re-entry mediated neurodegeneration and its treatment role in the pathogenesis of Alzheimer’s disease. Neurochem Int 2009, 54:84-88.
  • [65]Ferretti MT, Bruno MA, Ducatenzeiler A, Klein WL, Cuello AC: Intracellular Aβ-oligomers and early inflammation in a model of Alzheimer’s disease. Neurobiol Aging 2012, 33:1329-1342.
  • [66]Erickson MA, Hartvigson PE, Morofuji Y, Owen JB, Butterfield D, Banks WA: Lipopolysaccharide impairs amyloid beta efflux from brain: altered vascular sequestration, cerebrospinal fluid reabsorption, peripheral clearance and transporter function at the blood–brain barrier. J Neuroinflammation 2012, 9:150. BioMed Central Full Text
  • [67]Lu JJ, Pan W, Hu YJ, Wang YT: Multi-target drugs: the trend of drug research and development. PLoS One 2012, 7:e40262.
  文献评价指标  
  下载次数:0次 浏览次数:1次