期刊论文详细信息
BMC Systems Biology
Statistical ensemble analysis for simulating extrinsic noise-driven response in NF-κB signaling networks
Jean-Loup Faulon1  Steven J Plimpton3  Jaewook Joo2 
[1] Department of Biology, Evry University, Evry Cedex, France;Department of Physics and Astronomy, University of Tennessee, Knoxville 37996, USA;Scalable Algorithms Department, Sandia National Laboratories, Albuquerque, NM 87185, USA
关键词: NF-κB signal transduction network;    Cell to cell variability;    Extrinsic noise;    Statistical ensemble;   
Others  :  1142829
DOI  :  10.1186/1752-0509-7-45
 received in 2012-11-20, accepted in 2013-05-07,  发布年份 2013
PDF
【 摘 要 】

Background

Gene expression profiles and protein dynamics in single cells have a large cell-to-cell variability due to intracellular noise. Intracellular fluctuations originate from two sources: intrinsic noise due to the probabilistic nature of biochemical reactions and extrinsic noise due to randomized interactions of the cell with other cellular systems or its environment. Presently, there is no systematic parameterization and modeling scheme to simulate cellular response at the single cell level in the presence of extrinsic noise.

Results

In this paper, we propose a novel statistical ensemble method to simulate the distribution of heterogeneous cellular responses in single cells. We capture the effects of extrinsic noise by randomizing values of the model parameters. In this context, a statistical ensemble is a large number of system replicates, each with randomly sampled model parameters from biologically feasible intervals. We apply this statistical ensemble approach to the well-studied NF-κB signaling system. We predict several characteristic dynamic features of NF-κB response distributions; one of them is the dosage-dependent distribution of the first translocation time of NF-κB.

Conclusion

The distributions of heterogeneous cellular responses that our statistical ensemble formulation generates reveal the effect of different cellular conditions, e.g., effects due to wild type versus mutant cells or between different dosages of external stimulants. Distributions generated in the presence of extrinsic noise yield valuable insight into underlying regulatory mechanisms, which are sometimes otherwise hidden.

【 授权许可】

   
2013 Joo et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328165624597.pdf 1793KB PDF download
Figure 12. 93KB Image download
Figure 11. 19KB Image download
Figure 10. 87KB Image download
Figure 9. 179KB Image download
Figure 8. 99KB Image download
Figure 7. 114KB Image download
Figure 6. 59KB Image download
Figure 5. 124KB Image download
Fig.1. 7KB Image download
Figure 3. 101KB Image download
Figure 2. 69KB Image download
Figure 1. 44KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Fig.1.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

【 参考文献 】
  • [1]Thattai M, van Oudenaarden A: Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci 2001, 98:8614-8619.
  • [2]Elowitz MB, Levine AJ, Siggia ED, Swain PS: Stochastic gene expression in a single cell. Science 2002, 297:1183-1186.
  • [3]Swain PS, Elowitz MB, Siggia ED: Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci 2002, 99:12795-12800.
  • [4]Blake WJ, Karn M, Cantor CR, Collins JJ: Noise in eukaryotic gene expression. Science 2003, 422:633-637.
  • [5]Raser JM, O’Shea EK: Control of stochasticity in eukaryotic gene expression. Science 2004, 304:1811-1814.
  • [6]Rosenfeld N, Young JW, Alon U, Swain SS, Elowitz MB: Gene regulation at the single-cell level. Science 2005, 307:1962-1965.
  • [7]Pedraza JM, van Oudenaarden A: Noise propagation in gene networks. Science 2005, 307:1965-1969.
  • [8]Raj A, Perskin CS, Tranchina D, Vargas DY, Tyagi S: Stochastic mRNA synthesis in mammalian cells. PLoS Biol 2006, 4:e309.
  • [9]Cohen AA, Geva-Zatorsky N, Eden E, Frenkel-Morgenstern M, Issaeva I, Sigal A, Milo R, Cohen-Saidon C, Liron Y, Kam Z, Cohen L, Danon T, Perzov N, Alon U: Dynamic proteomics of individual cancer cells in response to a drug. Science 2008, 322:1511-1516.
  • [10]Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK: Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 2009, 459:428-432.
  • [11]McAdams HH, Shapiro L: Circuit simulation of genetic networks. Science 1995, 269:650-656.
  • [12]Arkin A, Ross J, McAdams HH: Stochastic kinetic analysis of developmental pathways bifurcation in phage λ-infected E. Coli cells. Genetics 1998, 149:1633-1648.
  • [13]Blake WJ, Balazsi G, Kohanski MA, Isaacs FJ, Murphy KF, Kuang Y, Cantor CR, Walt DR, Collins JJ: Phenotypic consequences of promoter-mediated transcriptional noise. Mol Cell 2006, 24:853-865.
  • [14]Paulsson J: Summing up the noise in gene networks. Nature 2004, 427:415-418.
  • [15]Shahrezaei V, Ollivier JF, Swain PS: Colored extrinsic fluctuations and stochastic gene expression. Mol Syst Biol 2008, 4:196.
  • [16]Brown KS, Hill CC, Calero GA, Myers CR, Lee KH, Sethna JP, Cerione RA: The statistical mechanics of complex signaling networks: nerve growth factor signaling. Phys Biol 2004, 1:184-195.
  • [17]Huang K: Statistical Mechanics. second edition. New York: Wiley; 1987.
  • [18]Verma IM, Stevenson J: IκB kinase: beginning, not the end. Proc Natl Acad Sci U S A 1997, 94:11758-11760.
  • [19]Li Q, Verma IM: NF-κB regulation in the immune system. Nat Rev Immunol 2002, 2:725.
  • [20]Hoffmann A, Baltimore D: Circuitry of nuclear factor κB signaling. Immunol Rev 2006, 210:171-186.
  • [21]Hoffmann A, Levchenko A, Scott ML, Baltimore D: The IκB-NF-κB signaling module: temporal control and selective gene activation. Science 2002, 298:1241-1245.
  • [22]Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, Ma A: Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 2000, 289:2350-2354.
  • [23]Lipniacki T, Paszek P, Brasier AR, Luxon BA, Kimmel M: Mathematical model of NF-κB regulatory module. J Theor Biol 2004, 228:195-215.
  • [24]Lipniacki T, Paszek P, Brasier AR, Luxon BA, Kimmel M: Stochastic regulation in early immune response. Biophys J 2006, 90:725-742.
  • [25]Nelson DE, Ihekwaba AEC, Elliott M, Johnson JR, Gibney CA, Foreman BE, Nelson G, See V, Horton CA, Spiller DG, Edwards SW, McDowell HP, Unitt JF, Sullivan E, Grimley R, Benson N, Broomhead D, Kell DB, White MRH: Oscillations in NF-κB signaling control the dynamics of gene expression. Science 2004, 306:704-708.
  • [26]Nelson DE, Horton CA, See V, Johnson JR, Nelson G, Spiller DG: Response to comments on “oscillations in NF-κB signaling control the dynamics of gene expression”. Science 2005, 308:52b.
  • [27]Barken D, Wang CJ, Kearns J, Cheong R, Hoffmann A, Levchenko A: Comment on “oscillations in NF-κB signaling control the dynamics of gene expression”. Science 2005, 308:52a.
  • [28]Lee TK, Denny EM, Sanghvi JC, Gaston JE, Maynard ND, Hughey JJ, Covert MW: A noisy paracrine signal determinines the cellular NF-κB response to lipopolysaccharide. Sci Signal 2009, 2(93):ra 65.
  • [29]Ashall L, Horton CA, Nelson DE, Paszek P, Harper CV, Sillitoe K, Ryan S, Spiller DG, Unitt JF, Broomhead DS, Kell DB, Rand DA, Sée V, White MR: Pulsatile stimulation determines timing and specificity of NF-κB -dependent transcription. Science 2009, 324:242-246.
  • [30]Bartfeld S, Hess S, Bauer B, Machuy N, Ogilvie LA, Schuchhardt J, Meyer TF: High-throughput and single-cell imaging of NF-κB oscillations using monoclonal cell lines. BMC Cell Biol 2010, 11:21. BioMed Central Full Text
  • [31]Turner DA, Paszek P, Woodcock DJ, Nelson DE, Horton CA, Wang Y, Spiller DG, Rand DA, White MRH, Harper CV: Physiological levels of TNF stimulation induce stochastic dynamics of NF-κB responses in single living cells. J Cell Sci 2010, 123:2834-2843.
  • [32]Tay S, Hughey JJ, Lee TK, Lipniacki T, Quake SR, Covert MW: Single-cell NF-κB dynamics reveal digital activation and analogue information processing. Nature 2010, 466:267-271.
  • [33]Paszek P, Ryan S, Ashall L, Sillitoe K, Harper CV, Spiller DG, Rand DA, White MR: Population robustness arising from cellular heterogeneity. Proc Natl Acad Sci 2010, 107:11644-11649.
  • [34]Hayot F, Jayaprakash C: NF-κB oscillations and cell-to-cell variability. J Theor Biol 2006, 240:583-591.
  • [35]Ihekwaba AEC, Broomhead DS, Grimley RL, Benson N, Kell DB: Sensitivity analysis of parameters controlling oscillatory signaling in the NF-κB pathway: the roles of IKK and IκBα. Syst Biol 2004, 1:93-103.
  • [36]James CD, Moorman MW, Carson BD, Branda CS, Lantz JW, Manginell RP, Martino A, Singh AK: Nuclear translocation kinetics of NF-κB in macrophages challenged with pathogens in a microfluidic platform. Biomed Microdevices 2009, 11:693-700.
  • [37]Tian B, Nowak DE, Brasier AR: A TNF-induced gene expression program under oscillatory NF-κB control. BMC Genomics 2005, 6:137-155. BioMed Central Full Text
  • [38]Werner SL, Barken D, Hoffmann A: Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 2005, 309:1857-1861.
  • [39]Covert MW, Leung TH, Gaston JE, Baltimore D: Achieving stability of lipopolysaccharide-induced NF-κB activation. Science 2005, 309:1854-1857.
  • [40]Joo J, Plimpton S, Martin S, Swiler L, Faulon JL: Sensitivity analysis of a computational model of the IKK-NF-kappaB-IkappaBalpha-A20 signal transduction network. Ann NY Acd Sci 2007, 1115:221-239.
  • [41]Plimpton SJ, Slepoy A: Microbial cell modeling via reacting diffusing particles. J Phys: Conference Series 2005, 16:305-309.
  • [42]Swiler LP, Wyss GD: A user’s guide to Sandia’s Latin Hypercube sampling software: LHS UNIX library/standalone version. 2004, 2004-2439. [SAND Report]
  文献评价指标  
  下载次数:79次 浏览次数:2次