BMC Genomics | |
Glucocorticoid receptor coordinates transcription factor-dominated regulatory network in macrophages | |
Inez Rogatsky3  Maria A Sacta4  Rebecca Gupte2  Maddalena Coppo1  Yurii Chinenov3  | |
[1] Hospital for Special Surgery, The David Rosensweig Genomics Center, 535 East 70th Street, New York, NY 10021, USA;Graduate Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021, USA;Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021, USA;Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, 1300 York Avenue, New York, NY 10021, USA | |
关键词: KLF transcription factors; Gene regulatory network; Feed forward loops; Inflammation; Glucocorticoid receptor; Transcriptional regulation; | |
Others : 1216293 DOI : 10.1186/1471-2164-15-656 |
|
received in 2014-04-24, accepted in 2014-07-25, 发布年份 2014 | |
【 摘 要 】
Background
Inflammation triggered by infection or injury is tightly controlled by glucocorticoid hormones which signal via a dedicated transcription factor, the Glucocorticoid Receptor (GR), to regulate hundreds of genes. However, the hierarchy of transcriptional responses to GR activation and the molecular basis of their oftentimes non-linear dynamics are not understood.
Results
We investigated early glucocorticoid-driven transcriptional events in macrophages, a cell type highly responsive to both pro- and anti-inflammatory stimuli. Using whole transcriptome analyses in resting and acutely lipopolysaccharide (LPS)-stimulated macrophages, we show that early GR target genes form dense networks with the majority of control nodes represented by transcription factors. The expression dynamics of several glucocorticoid-responsive genes are consistent with feed forward loops (FFL) and coincide with rapid GR recruitment. Notably, GR binding sites in genes encoding members of the KLF transcription factor family colocalize with KLF binding sites. Moreover, our gene expression, transcription factor binding and computational data are consistent with the existence of the GR-KLF9-KLF2 incoherent FFL. Analysis of LPS-downregulated genes revealed striking enrichment in multimerized Zn-fingers- and KRAB domain-containing proteins known to bind nucleic acids and repress transcription by propagating heterochromatin. This raises an intriguing possibility that an increase in chromatin accessibility in inflammatory macrophages results from broad downregulation of negative chromatin remodelers.
Conclusions
Pro- and anti-inflammatory stimuli alter the expression of a vast array of transcription factors and chromatin remodelers. By regulating multiple transcription factors, which propagate the initial hormonal signal, GR acts as a coordinating hub in anti-inflammatory responses. As several KLFs promote the anti-inflammatory program in macrophages, we propose that GR and KLFs functionally cooperate to curb inflammation.
【 授权许可】
2014 Chinenov et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150630001958749.pdf | 3710KB | download | |
Figure 1. | 35KB | Image | download |
Figure 7. | 68KB | Image | download |
Figure 6. | 113KB | Image | download |
Figure 5. | 93KB | Image | download |
Figure 4. | 135KB | Image | download |
Figure 3. | 148KB | Image | download |
Figure 2. | 146KB | Image | download |
Figure 1. | 158KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 1.
【 参考文献 】
- [1]Silverman MN, Sternberg EM: Glucocorticoid regulation of inflammation and its functional correlates: from HPA axis to glucocorticoid receptor dysfunction. Ann N Y Acad Sci 2012, 1261:55-63.
- [2]Rhen T, Cidlowski JA: Antiinflammatory action of glucocorticoids–new mechanisms for old drugs. N Engl J Med 2005, 353:1711-1723.
- [3]Chinenov Y, Gupte R, Rogatsky I: Nuclear receptors in inflammation control: repression by GR and beyond. Mol Cell Endocrinol 2013, 380:55-64.
- [4]Meagher LC, Cousin JM, Seckl JR, Haslett C: Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes. J Immunol 1996, 156:4422-4428.
- [5]Sica A, Mantovani A: Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 2012, 122:787-795.
- [6]Varga G, Ehrchen J, Tsianakas A, Tenbrock K, Rattenholl A, Seeliger S, Mack M, Roth J, Sunderkoetter C: Glucocorticoids induce an activated, anti-inflammatory monocyte subset in mice that resembles myeloid-derived suppressor cells. J Leukoc Biol 2008, 84:644-650.
- [7]Chrousos GP: Stress and sex versus immunity and inflammation. Sci Signal 2010, 3:pe36.
- [8]Maranville JC, Luca F, Richards AL, Wen X, Witonsky DB, Baxter S, Stephens M, Di Rienzo A: Interactions between glucocorticoid treatment and cis-regulatory polymorphisms contribute to cellular response phenotypes. PLoS Genet 2011, 7:e1002162.
- [9]Yamamoto KR: Steroid receptor regulated transcription of specific genes and gene networks. Annu Rev Genet 1985, 19:209-252.
- [10]Shen-Orr SS, Milo R, Mangan S, Alon U: Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 2002, 31:64-68.
- [11]Mangan S, Alon U: Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci U S A 2003, 100:11980-11985.
- [12]Alon U: Network motifs: theory and experimental approaches. Nat Rev Genet 2007, 8:450-461.
- [13]Goentoro L, Shoval O, Kirschner MW, Alon U: The incoherent feedforward loop can provide fold-change detection in gene regulation. Mol Cell 2009, 36:894-899.
- [14]Wall ME, Dunlop MJ, Hlavacek WS: Multiple functions of a feed-forward-loop gene circuit. J Mol Biol 2005, 349:501-514.
- [15]Zhu X, Gerstein M, Snyder M: Getting connected: analysis and principles of biological networks. Genes Dev 2007, 21:1010-1024.
- [16]Neph S, Stergachis AB, Reynolds A, Sandstrom R, Borenstein E, Stamatoyannopoulos JA: Circuitry and dynamics of human transcription factor regulatory networks. Cell 2012, 150:1274-1286.
- [17]Haynes BC, Maier EJ, Kramer MH, Wang PI, Brown H, Brent MR: Mapping functional transcription factor networks from gene expression data. Genome Res 2013, 23:1319-1328.
- [18]Re A, Cora D, Taverna D, Caselle M: Genome-wide survey of microRNA-transcription factor feed-forward regulatory circuits in human. Mol Biosyst 2009, 5:854-867.
- [19]Siciliano V, Garzilli I, Fracassi C, Criscuolo S, Ventre S, di Bernardo D: miRNAs confer phenotypic robustness to gene networks by suppressing biological noise. Nat Commun 2013, 4:2364.
- [20]Ogawa S, Lozach J, Benner C, Pascual G, Tangirala RK, Westin S, Hoffmann A, Subramaniam S, David M, Rosenfeld MG, Glass CK: Molecular determinants of crosstalk between nuclear receptors and Toll-like receptors. Cell 2005, 122:707-721.
- [21]Rao NA, McCalman MT, Moulos P, Francoijs KJ, Chatziioannou A, Kolisis FN, Alexis MN, Mitsiou DJ, Stunnenberg HG: Coactivation of GR and NFKB alters the repertoire of their binding sites and target genes. Genome Res 2011, 21:1404-1416.
- [22]Chinenov Y, Gupte R, Dobrovolna J, Flammer JR, Liu B, Michelassi FE, Rogatsky I: Role of transcriptional coregulator GRIP1 in the anti-inflammatory actions of glucocorticoids. Proc Natl Acad Sci USA 2012, 109:11776-11781.
- [23]Adelman K, Kennedy MA, Nechaev S, Gilchrist DA, Muse GW, Chinenov Y, Rogatsky I: Immediate mediators of the inflammatory response are poised for gene activation through RNA polymerase II stalling. Proc Natl Acad Sci U S A 2009, 106:18207-18212.
- [24]Gupte R, Muse GW, Chinenov Y, Adelman K, Rogatsky I: Glucocorticoid receptor represses proinflammatory genes at distinct steps of the transcription cycle. Proc Natl Acad Sci U S A 2013, 110:14616-14621.
- [25]Escoubet-Lozach L, Benner C, Kaikkonen MU, Lozach J, Heinz S, Spann NJ, Crotti A, Stender J, Ghisletti S, Reichart D, Cheng CS, Luna R, Ludka C, Sasik R, Garcia-Bassets I, Hoffmann A, Subramaniam S, Hardiman G, Rosenfeld MG, Glass CK: Mechanisms establishing TLR4-responsive activation states of inflammatory response genes. PLoS Genet 2012, 7:e1002401.
- [26]Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q: GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol 2008, 9(1):S4.
- [27]Paquette J, Tokuyasu T: EGAN: exploratory gene association networks. Bioinformatics 2010, 26:285-286.
- [28]Newman ME, Girvan M: Finding and evaluating community structure in networks. Phys Rev E Stat Nonlin Soft Matter Phys 2004, 69:026113.
- [29]Isserlin R, Merico D, Alikhani-Koupaei R, Gramolini A, Bader GD, Emili A: Pathway analysis of dilated cardiomyopathy using global proteomic profiling and enrichment maps. Proteomics 2010, 10:1316-1327.
- [30]Simmen RC, Eason RR, McQuown JR, Linz AL, Kang TJ, Chatman L Jr, Till SR, Fujii-Kuriyama Y, Simmen FA, Oh SP: Subfertility, uterine hypoplasia, and partial progesterone resistance in mice lacking the Kruppel-like factor 9/basic transcription element-binding protein-1 (Bteb1) gene. J Biol Chem 2004, 279:29286-29294.
- [31]Mangan S, Itzkovitz S, Zaslaver A, Alon U: The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli. J Mol Biol 2006, 356:1073-1081.
- [32]Yu CY, Mayba O, Lee JV, Tran J, Harris C, Speed TP, Wang JC: Genome-wide analysis of glucocorticoid receptor binding regions in adipocytes reveal gene network involved in triglyceride homeostasis. PLoS One 2010, 5:e15188.
- [33]Kuo T, Lew MJ, Mayba O, Harris CA, Speed TP, Wang JC: Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling. Proc Natl Acad Sci U S A 2012, 109:11160-11165.
- [34]Uhlenhaut NH, Barish GD, Yu RT, Downes M, Karunasiri M, Liddle C, Schwalie P, Hubner N, Evans RM: Insights into negative regulation by the glucocorticoid receptor from genome-wide profiling of inflammatory cistromes. Mol Cell 2013, 49:158-171.
- [35]Lachmann A, Xu H, Krishnan J, Berger SI, Mazloom AR, Ma’ayan A: ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics 2010, 26:2438-2444.
- [36]Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J, Loh YH, Yeo HC, Yeo ZX, Narang V, Govindarajan KR, Leong B, Shahab A, Ruan Y, Bourque G, Sung WK, Clarke ND, Wei CL, Ng HH: Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 2008, 133:1106-1117.
- [37]Jiang J, Chan YS, Loh YH, Cai J, Tong GQ, Lim CA, Robson P, Zhong S, Ng HH: A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 2008, 10:353-360.
- [38]Mikkelsen TS, Xu Z, Zhang X, Wang L, Gimble JM, Lander ES, Rosen ED: Comparative epigenomic analysis of murine and human adipogenesis. Cell 2010, 143:156-169.
- [39]Lefterova MI, Steger DJ, Zhuo D, Qatanani M, Mullican SE, Tuteja G, Manduchi E, Grant GR, Lazar MA: Cell-specific determinants of peroxisome proliferator-activated receptor gamma function in adipocytes and macrophages. Mol Cell Biol 2010, 30:2078-2089.
- [40]MacGillavry HD, Cornelis J, van der Kallen LR, Sassen MM, Verhaagen J, Smit AB, van Kesteren RE: Genome-wide gene expression and promoter binding analysis identifies NFIL3 as a repressor of C/EBP target genes in neuronal outgrowth. Mol Cell Neurosci 2011, 46:460-468.
- [41]Urrutia R: KRAB-containing zinc-finger repressor proteins. Genome Biol 2003, 4:231.
- [42]Takahashi K, Sugi Y, Hosono A, Kaminogawa S: Epigenetic regulation of TLR4 gene expression in intestinal epithelial cells for the maintenance of intestinal homeostasis. J Immunol 2009, 183:6522-6529.
- [43]Huang C, Martin S, Pfleger C, Du J, Buckner JH, Bluestone JA, Riley JL, Ziegler SF: Cutting edge: a novel, human-specific interacting protein couples FOXP3 to a chromatin-remodeling complex that contains KAP1/TRIM28. J Immunol 2013, 190:4470-4473.
- [44]Barde I, Rauwel B, Marin-Florez RM, Corsinotti A, Laurenti E, Verp S, Offner S, Marquis J, Kapopoulou A, Vanicek J, Trono D: A KRAB/KAP1-miRNA cascade regulates erythropoiesis through stage-specific control of mitophagy. Science 2013, 340:350-353.
- [45]Glass CK, Saijo K: Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol 2010, 10:365-376.
- [46]Clark AR, Belvisi MG: Maps and legends: the quest for dissociated ligands of the glucocorticoid receptor. Pharmacol Ther 2011, 134:54-67.
- [47]Das H, Kumar A, Lin Z, Patino WD, Hwang PM, Feinberg MW, Majumder PK, Jain MK: Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes. Proc Natl Acad Sci U S A 2006, 103:6653-6658.
- [48]Das M, Lu J, Joseph M, Aggarwal R, Kanji S, McMichael BK, Lee BS, Agarwal S, Ray-Chaudhury A, Iwenofu OH, Kuppusamy P, Pompili VJ, Jain MK, Das H: Kruppel-like factor 2 (KLF2) regulates monocyte differentiation and functions in mBSA and IL-1beta-induced arthritis. Curr Mol Med 2012, 12:113-125.
- [49]Katakura T, Miyazaki M, Kobayashi M, Herndon DN, Suzuki F: CCL17 and IL-10 as effectors that enable alternatively activated macrophages to inhibit the generation of classically activated macrophages. J Immunol 2004, 172:1407-1413.
- [50]Kato T, Saeki H, Tsunemi Y, Shibata S, Tamaki K, Sato S: Thymus and activation-regulated chemokine (TARC)/CC chemokine ligand (CCL) 17 accelerates wound healing by enhancing fibroblast migration. Exp Dermatol 2011, 20:669-674.
- [51]Shi X, Shi W, Li Q, Song B, Wan M, Bai S, Cao X: A glucocorticoid-induced leucine-zipper protein, GILZ, inhibits adipogenesis of mesenchymal cells. EMBO Rep 2003, 4:374-380.
- [52]Groner AC, Meylan S, Ciuffi A, Zangger N, Ambrosini G, Denervaud N, Bucher P, Trono D: KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genet 2010, 6:e1000869.
- [53]Iyengar S, Farnham PJ: KAP1 protein: an enigmatic master regulator of the genome. J Biol Chem 2011, 286:26267-26276.
- [54]Shin JH, Ko HS, Kang H, Lee Y, Lee YI, Pletinkova O, Troconso JC, Dawson VL, Dawson TM: PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson’s disease. Cell 2011, 144:689-702.
- [55]Kino T, Pavlatou MG, Moraitis AG, Nemery RL, Raygada M, Stratakis CA: ZNF764 haploinsufficiency may explain partial glucocorticoid, androgen, and thyroid hormone resistance associated with 16p11.2 microdeletion. J Clin Endocrinol Metab 2012, 97:E1557-E1566.
- [56]Natoli G: Specialized chromatin patterns in the control of inflammatory gene expression. Curr Top Microbiol Immunol 2011, 349:61-72.
- [57]Chen SH, Masuno K, Cooper SB, Yamamoto KR: Incoherent feed-forward regulatory logic underpinning glucocorticoid receptor action. Proc Natl Acad Sci U S A 2013, 110:1964-1969.
- [58]He G, Sun D, Ou Z, Ding A: The protein Zfand5 binds and stabilizes mRNAs with AU-rich elements in their 3′-untranslated regions. J Biol Chem 2012, 287:24967-24977.
- [59]McConnell BB, Yang VW: Mammalian Kruppel-like factors in health and diseases. Physiol Rev 2010, 90:1337-1381.
- [60]Mahabeleshwar GH, Kawanami D, Sharma N, Takami Y, Zhou G, Shi H, Nayak L, Jeyaraj D, Grealy R, White M, McManus R, Ryan T, Leahy P, Lin Z, Haldar SM, Atkins GB, Wong HR, Lingrel JB, Jain MK: The myeloid transcription factor KLF2 regulates the host response to polymicrobial infection and endotoxic shock. Immunity 2011, 34:715-728.
- [61]Alder JK, Georgantas RW 3rd, Hildreth RL, Kaplan IM, Morisot S, Yu X, McDevitt M, Civin CI: Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo. J Immunol 2008, 180:5645-5652.
- [62]Kurotaki D, Osato N, Nishiyama A, Yamamoto M, Ban T, Sato H, Nakabayashi J, Umehara M, Miyake N, Matsumoto N, Nakazawa M, Ozato K, Tamura T: Essential role of the IRF8-KLF4 transcription factor cascade in murine monocyte differentiation. Blood 2013, 121:1839-1849.
- [63]Liao X, Sharma N, Kapadia F, Zhou G, Lu Y, Hong H, Paruchuri K, Mahabeleshwar GH, Dalmas E, Venteclef N, Flask CA, Kim J, Doreian BW, Lu KQ, Kaestner KH, Hamik A, Clément K, Jain MK: Kruppel-like factor 4 regulates macrophage polarization. J Clin Invest 2011, 121:2736-2749.
- [64]Velarde MC, Zeng Z, McQuown JR, Simmen FA, Simmen RC: Kruppel-like factor 9 is a negative regulator of ligand-dependent estrogen receptor alpha signaling in Ishikawa endometrial adenocarcinoma cells. Mol Endocrinol 2007, 21:2988-3001.
- [65]Mitchell DL, DiMario JX: Bimodal, reciprocal regulation of fibroblast growth factor receptor 1 promoter activity by BTEB1/KLF9 during myogenesis. Mol Biol Cell 2010, 21:2780-2787.
- [66]Patel S, Xi ZF, Seo EY, McGaughey D, Segre JA: Klf4 and corticosteroids activate an overlapping set of transcriptional targets to accelerate in utero epidermal barrier acquisition. Proc Natl Acad Sci U S A 2006, 103:18668-18673.
- [67]Sasse SK, Mailloux CM, Barczak AJ, Wang Q, Altonsy MO, Jain MK, Haldar SM, Gerber AN: The glucocorticoid receptor and KLF15 regulate gene expression dynamics and integrate signals through feed-forward circuitry. Mol Cell Biol 2013, 33:2104-2115.