期刊论文详细信息
BMC Evolutionary Biology
Inferring explicit weighted consensus networks to represent alternative evolutionary histories
Vladimir Makarenkov2  Pedro R Peres-Neto1  Mehdi Layeghifard2 
[1] Département des Sciences biologiques, Université du Québec à Montréal (UQÀM), CP 8888, Succ. Centre Ville, Montréal, QC H3C 3P8, Canada;Département d’Informatique, Université du Québec à Montréal (UQÀM), CP 8888, Succ. Centre Ville, Montréal, QC H3C 3P8, Canada
关键词: Reticulate evolution;    Phylogenetic tree;    Phylogenetic network;    Consensus tree;    Consensus network;   
Others  :  858172
DOI  :  10.1186/1471-2148-13-274
 received in 2013-08-23, accepted in 2013-12-16,  发布年份 2013
PDF
【 摘 要 】

Background

The advent of molecular biology techniques and constant increase in availability of genetic material have triggered the development of many phylogenetic tree inference methods. However, several reticulate evolution processes, such as horizontal gene transfer and hybridization, have been shown to blur the species evolutionary history by causing discordance among phylogenies inferred from different genes.

Methods

To tackle this problem, we hereby describe a new method for inferring and representing alternative (reticulate) evolutionary histories of species as an explicit weighted consensus network which can be constructed from a collection of gene trees with or without prior knowledge of the species phylogeny.

Results

We provide a way of building a weighted phylogenetic network for each of the following reticulation mechanisms: diploid hybridization, intragenic recombination and complete or partial horizontal gene transfer. We successfully tested our method on some synthetic and real datasets to infer the above-mentioned evolutionary events which may have influenced the evolution of many species.

Conclusions

Our weighted consensus network inference method allows one to infer, visualize and validate statistically major conflicting signals induced by the mechanisms of reticulate evolution. The results provided by the new method can be used to represent the inferred conflicting signals by means of explicit and easy-to-interpret phylogenetic networks.

【 授权许可】

   
2013 Layeghifard et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723094216926.pdf 3906KB PDF download
74KB Image download
88KB Image download
78KB Image download
119KB Image download
123KB Image download
138KB Image download
150KB Image download
166KB Image download
73KB Image download
153KB Image download
62KB Image download
38KB Image download
98KB Image download
58KB Image download
【 图 表 】

【 参考文献 】
  • [1]Pettersson E, Lundeberg J, Ahmadian A: Generations of sequencing technologies. Genomics 2009, 93:105-111.
  • [2]Posada D, Crandall KA: Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 2001, 16:37-45.
  • [3]Legendre P, Makarenkov V: Reconstruction of biogeographic and evolutionary networks using reticulograms. Syst Biol 2002, 51:199-216.
  • [4]Huson DH, Bryant D: Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 2006, 23:254-267.
  • [5]Huson DH, Rupp R, Scornavacca C: Phylogenetic Networks: Concepts, Algorithms and Applications. Cambridge: Cambridge University Press; 2010.
  • [6]Mason-Gamer RJ, Kellogg EA: Testing for phylogenetic conflict among molecular datasets in the tribe triticeae. Syst Biol 1996, 45:524-545.
  • [7]Giribet G, Edgecombe GD, Wheeler WC: Arthropod phylogeny based on eight molecular loci and morphology. Nature 2001, 413:157-161.
  • [8]Rokas A, King N, Finnerty J, Carroll SB: Conflicting phylogenetic signals at the base of the metazoan tree. Evol Devel 2003, 5:346-359.
  • [9]Zou X-H, Ge S: Conflicting gene trees and phylogenomics. J Syst Evol 2008, 46:795-807.
  • [10]Grechko VV: The problems of molecular phylogenetics with the example of squamate reptiles: Mitochondrial DNA markers. Mol Biol 2013, 47:55-74.
  • [11]Makarenkov V, Legendre P: From a phylogenetic tree to a reticulated network. J Comp Biol 2004, 11:195-212.
  • [12]Huelsenbeck JP: Performance of phylogenetic methods in simulation. Syst Biol 1995, 44:17-48.
  • [13]Yang Z, Goldman N, Friday A: Comparison of models for nucleotide substitution used in maximum-likelihood phylogenetic estimation. Mol Biol Evol 1994, 11:316-324.
  • [14]Graybeal A: Is it better to add taxa or characters to a difficult phylogenetic problem? Syst Biol 1998, 47:9-17.
  • [15]Harvey PH, Pagel MD: The comparative method in evolutionary biology. Oxford: Oxford University Press; 1991.
  • [16]Webb CO, Ackerly DD, McPeek MA, Donoghue MJ: Phylogenies and community ecology. Annu Rev Ecol Syst 2002, 33:475-505.
  • [17]Peres-Neto PR, Leibold MA, Dray S: Assessing the effects of spatial contingency and environmental filtering on metacommunity phylogenetics. Ecology 2012, 93:S14-S30.
  • [18]Takahashi K, Terai Y, Nishida M, Okada N: Phylogenetic relationships and ancient incomplete lineage sorting among cichlid fishes in lake Tanganyika as revealed by analysis of the insertion of retroposons. Mol Biol Evol 2001, 18:2057-2066.
  • [19]Jennings WB, Edwards SV: Speciational history of Australian grass finches (Poephila) inferred from thirty gene trees. Evolution 2005, 59:2033-2047.
  • [20]Pollard DA, Iyer VN, Moses AM, Eisen MB: Widespread discordance of gene trees with species tree in drosophila: evidence for incomplete lineage sorting. PLoS Genet 2006, 2:e173.
  • [21]Carstens BC, Knowles LL: Estimating species phylogeny from gene-tree probabilities despite incomplete lineage sorting: an example from Melanoplus grasshoppers. Syst Biol 2007, 56:400-411.
  • [22]Ebersberger I, Galgoczy P, Taudien S, Taenzer S, Platzer M, Haeseler AV: Mapping human genetic ancestry. Mol Biol Evol 2007, 24:2266-2276.
  • [23]Syring J, Farrell K, Businsky R, Cronn R, Liston A: Widespread genealogical nonmonophyly in species of Pinus subgenus Strobus. Syst Biol 2007, 56:1-19.
  • [24]Burbrink FT, Pyron RA: The impact of gene-tree/species-tree discordance on diversification-rate estimation. Evolution 2011, 65:1851-1861.
  • [25]Sánchez-Gracia A, Castresana J: Impact of deep coalescence on the reliability of species tree inference from different types of DNA markers in mammals. PLoS ONE 2012, 7:e30239.
  • [26]Soltis PS, Soltis DE, Chase MW: Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 1999, 402:402-404.
  • [27]Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF: A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 2000, 290:972-977.
  • [28]Moreira D, Guyader HL, Philippe H: The origin of red algae and the evolution of chloroplasts. Nature 2000, 405:69-72.
  • [29]Chen FC, Li WH: Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. Am J Hum Genet 2001, 68:444-456.
  • [30]Naylor GJP, Brown WM: Amphioxus mitochondrial DNA, chordate phylogeny, and the limits of inference based on comparisons of sequences. Syst Biol 1998, 47:61-76.
  • [31]Hwang UW, Friedrich M, Tautz D, Park CJ, Kim W: Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature 2001, 413:154-157.
  • [32]Mossel E, Vigoda E: Phylogenetic MCMC algorithms are misleading on mixtures of trees. Science 2005, 309:2207-2209.
  • [33]Kolaczkowski B, Thornton JW: Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 2004, 431:980-984.
  • [34]Kubatko LS, Degnan JH: Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst Biol 2007, 56:17-24.
  • [35]Margush T, McMorris FR: Consensus n-trees. Bull Math Biol 1981, 43:239-244.
  • [36]Nelson G: Cladistic analysis and synthesis: principles and definitions, with a historical note on Adanson's familles des plantes (1763–1764). Syst Zool 1979, 28:1-21.
  • [37]Page RDM: Comments on component-compatibility in historical biogeography. Cladistics 1989, 5:167-182.
  • [38]Bryant D: A classification of consensus methods for phylogenies. In BioConsensus. Edited by Janowitz M, Lapointe F-J, McMorris FR, Mirkin B, Roberts FS. Providence (RI): Center for Discrete Mathematics and Theoretical Computer Science, American Mathematical Society; 2003:1-21.
  • [39]Abello J, Pardalos PM, Resende MGC: On maximum clique problems in very large graphs. In External Memory Algorithms. Edited by Abello J, Vitter J. Piscataway, NJ: [DIMACS Series on Discrete Mathematics and Theoretical Computer Science 50]; 1999:119-130.
  • [40]Holland B, Huber K, Moulton V, Lockhart PJ: Using consensus networks to visualize contradictory evidence for species phylogeny. Mol Biol Evol 2004, 21:1459-1461.
  • [41]Bandelt H-J, Forster P, Rohl A: Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999, 16:37-48.
  • [42]Holland BR, Jermiin LS, Moulton V: Improved consensus network techniques for genome-scale phylogeny. Mol Biol Evol 2006, 23:848-855.
  • [43]Huson DH: SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 1998, 14:68-73.
  • [44]Huson DH, Rupp R: Summarizing multiple gene trees using cluster networks. Lect Notes Comput Sc 2008, 5251:296-305.
  • [45]Abby SS, Tannier E, Gouy M, Daubin V: Detecting lateral gene transfers by statistical reconciliation of phylogenetic forests. BMC Bioinformatics 2010, 11:324. BioMed Central Full Text
  • [46]Felsenstein J: PHYLIP - phylogeny inference package (Version 3.2). Cladistics 1989, 5:164-166.
  • [47]Swofford DL: PAUP: Phylogenetic analysis using parsimony, Macintosh version 3.0r. Champaign, Illinois: Computer program distributed by the Illinois Natural History Survey; 1991.
  • [48]Makarenkov V, Leclerc B: Comparison of additive trees using circular orders. J of Comp Biol 2000, 7:731-744.
  • [49]Matte-Tailliez O, Brochier C, Forterre P, Philippe H: Archaeal phylogeny based on ribosomal proteins. Mol Biol Evol 2002, 9:631-639.
  • [50]Saitou N, Nei M: The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4:406-425.
  • [51]Fitch WM: Toward defining the course of evolution: minimum change for a species tree topology. Syst Zool 1971, 20:406-416.
  • [52]Felsenstein J: Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981, 17:368-376.
  • [53]Rannala B, Yang Z: Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 1996, 43:304-311.
  • [54]Gascuel O: BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 1997, 14:685-695.
  • [55]Felsenstein J: PHYLIP (Phylogeny Inference Package) version 3.6. Seattle: Distributed by the author. Department of Genome Sciences, University of Washington; 2005.
  • [56]Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst Biol 2010, 59:307-21.
  • [57]Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP: MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012, 61:539-42.
  • [58]Robinson DR, Foulds LR: Comparison of phylogenetic trees. Math Biosci 1981, 53:131-147.
  • [59]Kuhner MK, Felsenstein J: A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol Biol Evol 1994, 11:459-468.
  • [60]Guindon S, Gascuel O: Efficient biased estimation of evolutionary distances when substitution rates vary across sites. Mol Biol Evol 2002, 19:534-543.
  • [61]Rambaut A, Grass NC: Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput Appl Biosci 1997, 13:235-238.
  • [62]Boc A, Makarenkov V: Towards an accurate identification of mosaic genes and partial horizontal gene transfers. Nucleic Acids Res 2011, 39:e141.
  • [63]Boc A, Philippe H, Makarenkov H: Inferring and validating horizontal gene transfer events using bipartition dissimilarity. Syst Biol 2010, 59:195-211.
  • [64]Boc A, Legendre P, Makarenkov V: An efficient algorithm for the detection and classification of horizontal gene transfer events and identification of mosaic genes. In Algorithms from and for nature and life. Edited by Lausen B, Van den Poel D, Ultsch A. Heidelberg, Germany: Springer Verlag; 2013:253-260.
  • [65]Huson DH, Scornavacca C: Dendroscope 3: An interactive tool for rooted phylogenetic trees and networks. Syst Biol 2012, 61:1061-1067.
  • [66]Boc A, Diallo Alpha B, Makarenkov V: T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Res 2012, 40:W573-W579.
  • [67]Bryant D, Moulton V: NeighborNet: An agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 2004, 21:255-265.
  • [68]Makarenkov V, Leclerc B: An algorithm for the fitting of a tree metric according to a weighted least-squares criterion. J Classif 1999, 16:3-26.
  • [69]Morrison DA: Phylogenetic networks are fundamentally different from other kinds of biological networks. In Network Biology: Theories, Methods and Applications. Edited by Zhang WJ. Nova Science Pub Inc; 2013:23-68.
  • [70]Hall BG: Comparison of the accuracies of several phylogenetic methods using protein and DNA sequences. Mol Biol Evol 2005, 22:792-802.
  • [71]Makarenkov V, Legendre P, Desdevises Y: Modelling phylogenetic relationships using reticulated networks. Zool Scripta 2004, 33:89-96.
  • [72]Holland BR, Moulton V: Consensus networks: a method for visualising incompatibilities in collections of trees. In Algorithms in bioinformatics, WABI. Edited by Benson G, Page R. Berlin, Germany: Springer; 2003:165-176.
  • [73]Guénoche A: Multiple consensus trees: a method to separate divergent genes. BMC Bioinformatics 2013, 14:46. BioMed Central Full Text
  文献评价指标  
  下载次数:95次 浏览次数:7次