期刊论文详细信息
BMC Infectious Diseases
High frequency of kdr L1014F is associated with pyrethroid resistance in Anopheles coluzzii in Sudan savannah of northern Nigeria
Charles S Wondji2  Helen Irving2  Zainab Tukur1  Yayo A Manu1  Sulaiman S Ibrahim2 
[1] Bayero University, P.M.B. 3011, Kano, Nigeria;Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
关键词: Vector control;    kdr;    Target-site mutations;    Savannah;    Nigeria;    An. arabiensis;    An. coluzzii;   
Others  :  1127187
DOI  :  10.1186/1471-2334-14-441
 received in 2014-03-25, accepted in 2014-08-13,  发布年份 2014
PDF
【 摘 要 】

Background

Malaria burden is high in Nigeria, yet information on the major mosquito vectors is lacking especially in the Sudan savannah region of the country. In order to facilitate the design of future insecticide-based control interventions in the region, this study has established the resistance profile of An. gambiae s.l. populations in two northern Nigeria locations and assessed the contribution of target site resistance mutations.

Methods

Larval collection was conducted in two localities in Sudan savannah (Bunkure and Auyo) of northern Nigeria between 2009 and 2011, from which resulting adult, female mosquitoes were used for insecticides bioassays with deltamethrin, lambda-cyhalothrin, DDT and malathion. The mosquitoes were identified to species level and molecular forms and then genotyped for the presence of L1014F-kdr, L1014S-kdr and ace-1R mutations.

Results

WHO bioassays revealed that An. gambiae s.l. from both localities were highly resistant to lambda-cyhalothrin and DDT, but only moderately resistant to deltamethrin. Full susceptibility was observed to malathion. An. gambiae, M form (now An. coluzzii), was predominant over An. arabiensis in Auyo and was more resistant to lambda-cyhalothrin than An. arabiensis. No ‘S’ form (An. gambiae s.s.) was detected. A high frequency of 1014 F mutation (80.1%) was found in An. coluzzii in contrast to An. arabiensis (13.5%). The presence of the 1014 F kdr allele was significantly associated with resistance to lambda-cyhalothrin in An. coluzzii (OR = 9.85; P < 0.001) but not in An. arabiensis. The L1014S-kdr mutation was detected in a single An. arabiensis mosquito while no ace-1R mutation was found in any of the mosquitoes analysed.

Conclusions

The predominance of An. coluzzii and its resistance profile to main insecticides described in this study can guide the implementation of appropriate vector control interventions in this region of Nigeria where such information was previously lacking.

【 授权许可】

   
2014 Ibrahim et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150220033553374.pdf 1661KB PDF download
Figure 4. 25KB Image download
Figure 3. 31KB Image download
Figure 2. 37KB Image download
Figure 1. 91KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]World Health Organization: World Malaria Report. In WHO Global Malaria Programme. Geneva, Switzerland: WHO; 2011.
  • [2]World Health Organization: World Malaria Report. In WHO Global Malaria Programme. Geneva, Switzerland: WHO; 2013.
  • [3]Onwujekwe O, Uguru N, Etiaba E, Chikezie I, Uzochukwu B, Adjagba A: The economic burden of malaria on households and the health system in Enugu State southeast Nigeria. PLoS One 2013, 8(11):e78362.
  • [4]Gallup JL, Sachs JD: The economic burden of malaria. Am J Trop Med Hyg 2001, 64(1–2 Suppl):85-96.
  • [5]NIGERIA FY 2011 Malaria Operational Plan [http://www.pmi.gov/docs/default-source/default-document-library/malaria-operational-plans/fy11/nigeria_mop-fy11.pdf?sfvrsn=6 webcite]
  • [6]World Health Organization: World Malaria Report. In WHO Global Malaria Programme. Geneva, Switzerland: WHO; 2012.
  • [7]Okorie PN, McKenzie FE, Ademowo OG, Bockarie M, Kelly-Hope L: Nigeria Anopheles vector database: an overview of 100 years’ research. PLoS One 2011, 6(12):e28347.
  • [8]Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V: Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol 2011, 27(2):91-98.
  • [9]Prevention and management of insecticide resistance in vectors of public health importance [http://www.irac-online.org/documents/moa-brochure/?ext=pdf webcite]
  • [10]Seventh annual report to congress [http://www.pmi.gov/docs/default-source/default-document-library/malaria-operational-plans/fy13/nigeria_mop_fy13.pdf?sfvrsn=8 webcite]
  • [11]Hemingway J, Ranson H: Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 2000, 45:371-391.
  • [12]Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, Guillet P, Pasteur N, Pauron D: Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol 1998, 7(2):179-184.
  • [13]Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH: Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol 2000, 9(5):491-497.
  • [14]Weill M, Malcolm C, Chandre F, Mogensen K, Berthomieu A, Marquine M, Raymond M: The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol Biol 2004, 13(1):1-7.
  • [15]Awolola TS, Brooke BD, Hunt RH, Coetze M: Resistance of the malaria vector Anopheles gambiae s.s. to pyrethroid insecticides, in south-western Nigeria. Ann Trop Med Parasitol 2002, 96(8):849-852.
  • [16]Oduola AO, Idowu ET, Oyebola MK, Adeogun AO, Olojede JB, Otubanjo OA, Awolola TS: Evidence of carbamate resistance in urban populations of Anopheles gambiae s.s. mosquitoes resistant to DDT and deltamethrin insecticides in Lagos, South-Western Nigeria. Parasites Vectors 2012, 5:116.
  • [17]Adeogun A, Olojede J, Oduola A, Awolola T: Village-scale evaluation of PermaNet 3.0: an enhanced efficacy combination long-lasting insecticidal net against resistant populations of Anopheles gambiae ss. Malar Chemother Control Elimination 2012, 1:9.
  • [18]Molineaux L, Gramiccia G: The Garki Project: Research On The Epidemiology And Control Of Malaria In The Sudan Savanna Of West Africa. Geneva, Switzerland: WHO; 1980.
  • [19]Jigawa State. A New World [http://www.jigawastate.gov.ng/contentpage.php?id=82 webcite]
  • [20]Ado-Kurawa I: Efforts of the Shekarau Administration in Harnessing Resources for Social and Economic Development. Jaji: Research and Documentation Department; 2006.
  • [21]Kimmage K, Adams WM: Small-scale farmer-managed irrigation in northern Nigeria. Geoforum 1990, 21(4):435-443.
  • [22]Robert V, Le Goff G, Ariey F, Duchemin JB: A possible alternative method for collecting mosquito larvae in rice fields. Malar J 2002, 1:4.
  • [23]Gillies M, Coetzee M: A supplement to anophelinae of Africa south of Sahara (Afro-tropical region). The South African Institute for Medical Research 1987, 55:96-110.
  • [24]Das S, Garver L, Dimopoulos G: Protocol for mosquito rearing (An. gambiae). J Vis Exp 2007, (Issue 5):221. doi:10.3791/221.
  • [25]Livak KJ: Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics 1984, 107(4):611-634.
  • [26]Santolamazza F, Mancini E, Simard F, Qi Y, Tu Z, Della Torre A: Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar J 2008, 7:163.
  • [27]World Health Organization: Test Procedures for Insecticide Resistance Monitoring in Malaria Vectors, Bio-efficacy and Persistence of Insecticides on Treated Surfaces: Report of the WHO Informal Consultation. Geneva, Switzerland: WHO; 1998:28-30.
  • [28]Wondji CS, Morgan J, Coetzee M, Hunt RH, Steen K, Black WC, Hemingway J, Ranson H: Mapping a quantitative trait locus (QTL) conferring pyrethroid resistance in the African malaria vector Anopheles funestus. BMC Genomics 2007, 8:34.
  • [29]Witzig C, Parry M, Morgan JC, Irving H, Steven A, Cuamba N, Kerah-Hinzoumbe C, Ranson H, Wondji CS: Genetic mapping identifies a major locus spanning P450 clusters associated with pyrethroid resistance in kdr-free Anopheles arabiensis from Chad. Heredity 2013, 110(4):389-397.
  • [30]Kwiatkowska RM, Platt N, Poupardin R, Irving H, Dabire RK, Mitchell S, Jones CM, Diabate A, Ranson H, Wondji CS: Dissecting the mechanisms responsible for the multiple insecticide resistance phenotype in Anopheles gambiae s.s., M form, from Vallee du Kou, Burkina Faso. Gene 2013, 519(1):98-106.
  • [31]Onyabe DY, Conn JE: The distribution of two major malaria vectors, Anopheles gambiae and Anopheles arabiensis, in Nigeria. Mem Inst Oswaldo Cruz 2001, 96(8):1081-1084.
  • [32]Coluzzi M, Sabatini A, Petrarca V, Di Deco MA: Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg 1979, 73(5):483-497.
  • [33]Djouaka RF, Bakare AA, Coulibaly ON, Akogbeto MC, Ranson H, Hemingway J, Strode C: Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria. BMC Genomics 2008, 9:538.
  • [34]Awolola TS, Oduola AO, Oyewole IO, Obansa JB, Amajoh CN, Koekemoer LL, Coetzee M: Dynamics of knockdown pyrethroid insecticide resistance alleles in a field population of Anopheles gambiae s.s. in southwestern Nigeria. J Vector Borne Dis 2007, 44(3):181-188.
  • [35]Awolola TS, Oduola OA, Strode C, Koekemoer LL, Brooke B, Ranson H: Evidence of multiple pyrethroid resistance mechanisms in the malaria vector Anopheles gambiae sensu stricto from Nigeria. Trans R Soc Trop Med Hyg 2009, 103(11):1139-1145.
  • [36]Armstrong JA, Ramsdale CD, Ramakrishna V: Insecticide resistance in Anopheles gambiae Giles in Western Sokoto, Northern Nigeria. Ann Trop Med Parasitol 1958, 52(3):247-256.
  • [37]Ramakrishna V, Elliott R: Insecticide resistance in Anopheles gambiae in Sokoto province. Trans R Soc Trop Med Hyg 1959, 53(1):102-109.
  • [38]Namountougou M, Diabate A, Etang J, Bass C, Sawadogo SP, Gnankinie O, Baldet T, Martin T, Chandre F, Simard F, Dabire RK: First report of the L1014S kdr mutation in wild populations of Anopheles gambiae M and S molecular forms in Burkina Faso (West Africa). Acta Trop 2013, 125(2):123-127.
  • [39]Djegbe I, Boussari O, Sidick A, Martin T, Ranson H, Chandre F, Akogbeto M, Corbel V: Dynamics of insecticide resistance in malaria vectors in Benin: first evidence of the presence of L1014S kdr mutation in Anopheles gambiae from West Africa. Malar J 2011, 10:261.
  • [40]Himeidan YE, Chen H, Chandre F, Donnelly MJ, Yan G: Short report: permethrin and DDT resistance in the malaria vector Anopheles arabiensis from eastern Sudan. AmJTrop Med Hyg 2007, 77(6):1066-1068.
  • [41]Coluzzi M: Heterogeneities of the malaria vectorial system in tropical Africa and their significance in malaria epidemiology and control. Bull World Health Organ 1984, 62(Suppl):107-113.
  • [42]Antonio-Nkondjio C, Fossog BT, Ndo C, Djantio BM, Togouet SZ, Awono-Ambene P, Costantini C, Wondji CS, Ranson H: Anopheles gambiae distribution and insecticide resistance in the cities of Douala and Yaounde (Cameroon): influence of urban agriculture and pollution. Malar J 2011, 10:154.
  • [43]Djouaka R, Irving H, Tukur Z, Wondji CS: Exploring Mechanisms of Multiple Insecticide Resistance in a Population of the Malaria Vector Anopheles funestus in Benin. PLoS One 2011, 6(11):e27760.
  • [44]Morgan JC, Irving H, Okedi LM, Steven A, Wondji CS: Pyrethroid resistance in an Anopheles funestus population from Uganda. PLoS One 2010, 5(7):e11872.
  文献评价指标  
  下载次数:34次 浏览次数:20次