期刊论文详细信息
BMC Genetics
Association of single nucleotide polymorphic sites in candidate genes with aggressiveness and deoxynivalenol production in Fusarium graminearum causing wheat head blight
Thomas Miedaner1  Heiko K Parzies2  Jochen C Reif1  Tobias Würschum1  Firas Talas3 
[1] Universitaet Hohenheim, State Plant Breeding Institute (720), Fruwirthstr. 21, 70593 Stuttgart, Germany;Universitaet Hohenheim (350), Institute of Plant Breeding, Seed Science & Population Genetics, Fruwirthstr. 21, 70593 Stuttgart, Germany;National Commission of Biotechnology (NCBT), P. O. Box. 31902, Damascus, Syria
关键词: SNP;    Triticum aestivum;    QTL;    Linkage disequilibrium;    FHB;    Fusarium graminearum;    DON;    Association mapping;    Aggressiveness;   
Others  :  1122513
DOI  :  10.1186/1471-2156-13-14
 received in 2011-09-23, accepted in 2012-03-12,  发布年份 2012
PDF
【 摘 要 】

Background

Fusarium graminearum sensu stricto (s.s.) is an ubiquitous pathogen of cereals. The economic impact of Fusarium head blight (FHB) is characterized by crop losses and mycotoxin contamination. Our objective was to associate SNP diversity within candidate genes with phenotypic traits. A total of 77 F. graminearum s.s. isolates was tested for severity of fungal infection (= aggressiveness) and deoxynivalenol (DON) production in an inoculated field experiment at two locations in each of two years. For seven genes known to control fungal growth (MetAP1, Erf2) or DON production (TRI1, TRI5, TRI6 TRI10 and TRI14) single nucleotides polymorphic sites (SNPs) were determined and evaluated for the extent of linkage disequilibrium (LD). Associations of SNPs with both phenotypic traits were tested using linear mixed models.

Results

Decay of LD was in most instances fast. Two neighboring SNPs in MetAP1 and one SNP in Erf2 were significantly (P < 0.05) associated with aggressiveness explaining proportions of genotypic variance (pG) of 25.6%, 0.5%, and 13.1%, respectively. One SNP in TRI1 was significantly associated with DON production (pG = 4.4).

Conclusions

We argue that using the published sequence information of Fusarium graminearum as a template to amplify comparative sequence parts of candidate genes is an effective method to detect quantitative trait loci. Our findings underline the potential of candidate gene association mapping approaches to identify functional SNPs underlying aggressiveness and DON production for F. graminearum s.s populations.

【 授权许可】

   
2012 Talas et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150214021215191.pdf 730KB PDF download
Figure 5. 61KB Image download
Figure 4. 121KB Image download
Figure 3. 35KB Image download
Figure 2. 72KB Image download
Figure 1. 25KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Agrios GN: Plant Pathology. 5th edition. San Diego: Elsevier Press; 2004.
  • [2]O'Donnell K, Ward TJ, Geiser DM, Kistler HC, Aoki T: Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet Biol 2004, 41(6):600-623.
  • [3]Talas F, Parzies HK, Miedaner T: Diversity in genetic structure and chemotype composition of Fusarium graminearum sensu stricto populations causing wheat head blight in individual fields in Germany. Eur J Plant Pathol 2011, 131(1):39-48.
  • [4]Miedaner T, Cumagun CJR, Chakraborty S: Population genetics of three important head blight pathogens Fusarium graminearum, F. pseudograminearum and F. culmorum. J Phytopathol 2008, 156(3):129-139.
  • [5]European Commission: Commission Regulation (EC) No. 1126/2007 of 28 September 2007 amending Regulation (EC) No. 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. 2007. Official Journal of the European Union L255, 14-17. Published online
  • [6]Vanderplank J: Disease Resistance of Plants. New York: Academic Press; 1968.
  • [7]Gale LR, Chen LF, Hernick CA, Takamura K, Kistler HC: Population analysis of Fusarium graminearum from wheat fields in Eastern China. Phytopathology 2002, 92(12):1315-1322.
  • [8]Miedaner T, Schilling AG, Geiger HH: Molecular genetic diversity and variation for aggressiveness in populations of Fusarium graminearum and Fusarium culmorum sampled from wheat fields in different countries. J Phytopathol 2001, 149:641-648.
  • [9]Talas F, Kalih R, Miedaner T: Within-field variation of Fusarium graminearum sensu stricto isolates for aggressiveness and deoxynivalenol production in wheat head blight. Phytopathology 2012, 102(1):128-134.
  • [10]Ward TJ, Clear RM, Rooney AP, O'Donnell K, Gaba D, Patrick S, Starkey DE, Gilbert J, Geiser DM, Nowicki TW: An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet Biol 2008, 45(4):473-484.
  • [11]Zeller KA, Bowden RL, Leslie JF: Population differentiation and recombination in wheat scab populations of Gibberella zeae from the United States. Mol Ecol 2004, 13(3):563-571.
  • [12]Cumagun CJR, Bowden RL, Jurgenson JE, Leslie JF, Miedaner T: Genetic mapping of pathogenicity and aggressiveness of Gibberella zeae (Fusarium graminearum) towards wheat. Phytopathology 2004, 94(5):520-526.
  • [13]Cuomo CA, Güldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, Walton JD, Ma LJ, Baker SE, Rep M, Adam G, Antoniw J, Baldwin T, Calvo S, Chang YL, DeCaprio D, Gale LR, Gnerre S, Goswami RS, Hammond-Kosack K, Harris LJ, Hilburn K, Kennell JC, Kroken S, Magnuson JK, Mannhaupt G, Mauceli E, Mewes HW, Mitterbauer R, Muehlbauer G, et al.: The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 2007, 317(5843):1400-1402.
  • [14]Winnenburg R, Urban M, Beacham A, Baldwin TK, Holland S, Lindeberg M, Hansen H, Rawlings C, Hammond-Kosack KE, Kohler J: PHI-base update: additions to the pathogen host interaction database. Nucleic Acids Res 2008, 36:572-576.
  • [15]Dyer RB, Plattner RD, Kendra DF, Brown DW: Fusarium graminearum TRI1 is Required for high virulence and DON production on wheat but not for DON synthesis in vitr. J Agric Food Chem 2005, 53:9281-9287.
  • [16]Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M: Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathway genes and evolution. Biosci Biotechnol Biochem 2007, 71(9):2105-2123.
  • [17]Bartels DJ, Mitchell DA, Dong X, Deschenes RJ: Erf a novel gene product that affects the localization and palmitoylation of RAS in Saccharomyces cerevisiae. Mol Cell Biol 1999, 19(10):6775-6787.
  • [18]Chen S, Vetro JA, Chang YH: The specificity in vivo of two distinct methionine aminopeptidases in Saccharomyces cerevisiae. Arch Biochem Biophys 2002, 408(1):87-93.
  • [19]Yu J, Buckler ES: Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 2006, 17(2):155-160.
  • [20]Wilson LM, Whitt SR, Ibanez AM, Rocheford TR, Goodman MM, Buckler ES: Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 2004, 16(10):2719-2733.
  • [21]Karugia GW, Suga H, Gale LR, Nakajima T, Tomimura K, Hyakumachi M: Population structure of Fusarium graminearum species complex from a single Japanese wheat field sampled in two consecutive years. Plant Dis 2009, 93(2):170-174.
  • [22]Holm S: A simple sequentially rejective multiple test procedure. Scand J Stat 1979, 6:65-70.
  • [23]Magee DA, Sikora KM, Berkowicz EW, Berry DP, Howard DJ, Mullen MP, Evans RD, Spillane C, MacHugh DE: DNA sequence polymorphism in a panel of eight candidate bovine imprinted genes and their association with performance traits in Irish Holstein-Friesian cattle. BMC Genet 2010, 11:93.
  • [24]Proctor RH, Hohn TM, McCormick SP, Desjardins AE: TRI encodes an unusual zinc finger protein involved in regulation of trichothecene biosynthesis in Fusarium sporotrichioides. Appl Environ Microbiol 1995, 61(5):1923-1930.
  • [25]Dummitt B, Micka WS, Chang YH: Yeast glutamine fructose 6-phosphate aminotransferase (Gfa) requires methonine aminopeptidase activity for proper function. J Biol Chem 2005, 280(14):14356-14360.
  • [26]Li X, Chang YH: Amino terminal protein processing in Saccharomyces cerevisiae is an essential function that requires two distinct methionine aminopeptidases. Proc Natl Acad Sci 1995, 92(26):12357-12361.
  • [27]Bluhm BH, Zhao X, Flaherty JE, Xu JR, Dunkle LD: RAS regulates growth and pathogenesis in Fusarium graminearum. Mol Plant Microbe Interact 2007, 20(6):627-636.
  • [28]Reif JC, Maurer HP, Korzun V, Ebmeyer E, Miedaner T, Würschum T: Genetic architecture of grain yield and heading time in soft winter wheat. Theor Appl Genet 2011, 123(2):283-292.
  • [29]Würschum T, Maurer HP, Schulz B, Möhring J, Reif JC: Genome-wide association mapping reveals epistasis and genetic interaction networks in sugar beet. Theor Appl Genet 2011, 123(1):109-118.
  • [30]Peplow AW, Tag AG, Garifullina GF, Beremand MN: Identification of new genes positively regulated by TRI1 and a regulatory network for trichothecene mycotoxin production. Appl Environ Microbiol 2003, 69(5):2731-2736.
  • [31]Seong KY, Pasquali M, Zhou X, Song J, Hilburn K, McCormick S, Don Y, Xu JR, Kistler HC: Global gene regulation by Fusarium transcription factors TRI6 and TRI10 reveals adaptations for toxin biosynthesis. Mol Microbiol 2009, 72(2):354-367.
  • [32]Stich B, Melchinger AE, Frisch M, Maurer HP, Heckenberger M, Reif JC: Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theor Appl Genet 2005, 111(4):723-730.
  • [33]Cumagun CJR, Rabenstein F, Miedaner T: Genetic variation and covariation for aggressiveness deoxynivalenol production and fungal colonization among progeny of Gibberella zeae in wheat. Plant Pathol 2004, 53(4):446-453.
  • [34]Meek IB, Peplow AW, Ake CJR, Phillips TD, Beremand MN: TRI encodes the cytochrome P450 monooxygenase for C-8 hydroxylation during trichothecene biosynthesis in Fusarium sporotrichioides and resides upstream of another new TR gene. Appl Environ Microbiol 2003, 69(3):1607-1613.
  • [35]Von der Ohe C, Gauthier V, Tamburic-Ilincic L, Brule-Babel A, Fernando WGD, Clear R, Ward TJ, Miedaner T: A comparison of aggressiveness and deoxynivalenol production between Canadian Fusarium graminearum isolates with 3-acetyl and 15-acetyldeoxynivalenol chemotypes in field-grown spring wheat. Eur J Plant Pathol 2010, 127:407-417.
  • [36]Zhang H, Zhang Z, Van der Lee T, Xu J, Yang L, Yu D, Waalwijk C, Feng J: Population genetic analyses of Fusarium asiaticum populations from barley suggest a recent shift favoring 3ADON producers in southern China. Phytopathology 2010, 100(4):328-336.
  • [37]Wong P, Walter M, Lee W, Mannhaupt G, Münsterkötter M, Mewes HW, Adam G, Güldener U: FGDB: Revisiting the genome annotation of the plant pathogen Fusarium graminearum. Nucleic Acids Res 2011, 39(4):637-639.
  • [38]Stram DO, Lee JW: Variance components testing in longitudinal mixed effects model. Biometrics 1994, 50(4):1171-1177.
  • [39]Melchinger AE, Utz HF, Schön CC: Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and larger bias in estimates of QTL effects. Genetics 1998, 149(1):383-403.
  • [40]Gower JC: Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 1966, 53(3):325-338.
  • [41]Wright S: Evolution and Genetics of Populations, Variability within and among Natural Populations. 4th edition. Chicago: The University of Chicago Press; 1978.
  • [42]Weir BS: Genetic data analysis II. 2nd edition. Sunderland: Sinauer Associates; 1996.
  • [43]Hill WG, Robertson A: Linkage disequilibrium in finite populations. Theor Appl Genet 1968, 38(2):226-231.
  • [44]Maurer HP, Melchinger AE, Frisch M: Population genetic simulation and data analysis with Plabsoft. Euphytica 2008, 161(1):133-139.
  • [45]Bernardo R: Estimation of coefficient of coancestry using molecular markers in maize. Theor Appl Genet 1993, 85(8):1055-1062.
  • [46]Utz HF, Melchinger AE, Schön CC: Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 2000, 154(4):1839-1849.
  文献评价指标  
  下载次数:39次 浏览次数:28次