期刊论文详细信息
BMC Genomics
Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus: a chronicle of evolution in action
Maarten van de Guchte2  Emmanuelle Maguin2  Bouziane Moumen2  Jean-Michel Batto2  Benoît Quinquis1  Nathalie Galleron1  Sean Kennedy1  Rozenn Dervyn2  Samira Boudebbouze2  Julien Buratti3  Valentin Loux3  Johan Binesse2  Hela El Kafsi2 
[1] Present address: INRA, US1367 Metagenopolis, Jouy en Josas, France;AgroParisTech, UMR Micalis, Jouy en Josas, France;INRA, UR1077 Mathématique Informatique et Génome, Jouy en Josas, France
关键词: Evolution;    Adaptation;    Comparative genomics;    Genome;    Lactis;    Bulgaricus;    Lactobacillus delbrueckii;   
Others  :  1217178
DOI  :  10.1186/1471-2164-15-407
 received in 2014-04-02, accepted in 2014-05-14,  发布年份 2014
PDF
【 摘 要 】

Background

Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus are lactic acid producing bacteria that are largely used in dairy industries, notably in cheese-making and yogurt production. An earlier in-depth study of the first completely sequenced ssp. bulgaricus genome revealed the characteristics of a genome in an active phase of rapid evolution, in what appears to be an adaptation to the milk environment. Here we examine for the first time if the same conclusions apply to the ssp. lactis, and discuss intra- and inter-subspecies genomic diversity in the context of evolutionary adaptation.

Results

Both L. delbrueckii ssp. show the signs of reductive evolution through the elimination of superfluous genes, thereby limiting their carbohydrate metabolic capacities and amino acid biosynthesis potential. In the ssp. lactis this reductive evolution has gone less far than in the ssp. bulgaricus. Consequently, the ssp. lactis retained more extended carbohydrate metabolizing capabilities than the ssp. bulgaricus but, due to high intra-subspecies diversity, very few carbohydrate substrates, if any, allow a reliable distinction of the two ssp. We further show that one of the most important traits, lactose fermentation, of one of the economically most important dairy bacteria, L. delbruecki ssp. bulgaricus, relies on horizontally acquired rather than deep ancestral genes. In this sense this bacterium may thus be regarded as a natural GMO avant la lettre.

Conclusions

The dairy lactic acid producing bacteria L. delbrueckii ssp. lactis and ssp. bulgaricus appear to represent different points on the same evolutionary track of adaptation to the milk environment through the loss of superfluous functions and the acquisition of functions that allow an optimized utilization of milk resources, where the ssp. bulgaricus has progressed further away from the common ancestor.

【 授权许可】

   
2014 El Kafsi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150705020205183.pdf 3108KB PDF download
Figure 4. 39KB Image download
Figure 3. 85KB Image download
Figure 2. 28KB Image download
Figure 1. 86KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Weiss N, Schillinger U, Kandler O: Lactobacillus lactis, Lactobacillus leichmannii and Lactobacillus bulgaricus, Subjective Synonyms of Lactobacillus delbrueckii, and Description of Lactobacillus delbrueckii subsp. lactis comb. nov. and Lactobacillus delbrueckii subsp. bulgaricus comb. nov. Syst Appl Microbiol 1983, 4(4):552-557.
  • [2]Giraffa G, De Vecchi P, Rossetti L: Note: identification of Lactobacillus delbrueckii subspecies bulgaricus and subspecies lactis dairy isolates by amplified rDNA restriction analysis. J Appl Microbiol 1998, 85(5):918-924.
  • [3]Tanigawa K, Watanabe K: Multilocus sequence typing reveals a novel subspeciation of Lactobacillus delbrueckii. Microbiol 2011, 157(Pt 3):727-738.
  • [4]de Vos WM, Vaughan EE: Genetics of lactose utilization in lactic acid bacteria. FEMS Microbiol Rev 1994, 15(2–3):217-237.
  • [5]Germond JE, Lapierre L, Delley M, Mollet B, Felis GE, Dellaglio F: Evolution of the bacterial species Lactobacillus delbrueckii: a partial genomic study with reflections on prokaryotic species concept. Mol Biol Evol 2003, 20(1):93-104.
  • [6]van de Guchte M, Penaud S, Grimaldi C, Barbe V, Bryson K, Nicolas P, Robert C, Oztas S, Mangenot S, Couloux A, Loux V, Dervyn R, Bossy R, Bolotin A, Batto JM, Walunas T, Gibrat JF, Bessieres P, Weissenbach J, Ehrlich SD, Maguin E: The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci U S A 2006, 103(24):9274-9279.
  • [7]Teuber M: Lactic acid bacteria. In Biotechnology. 2nd edition. Edited by Rehm H-J, Reed G, Pühler A, Stadler P. Weinheim: Verlag Chemie; 1993:325-366. [1]
  • [8]Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Diaz-Muniz I, Dosti B, Smeianov V, Wechter W, Barabote R, et al.: Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 2006, 103(42):15611-15616.
  • [9]Hao P, Zheng H, Yu Y, Ding G, Gu W, Chen S, Yu Z, Ren S, Oda M, Konno T, Wang S, Li X, Ji ZS, Zhao G: Complete sequencing and pan-genomic analysis of Lactobacillus delbrueckii subsp. bulgaricus reveal its genetic basis for industrial yogurt production. PLoS One 2011, 6(1):e15964.
  • [10]Sun Z, Chen X, Wang J, Zhao W, Shao Y, Guo Z, Zhang X, Zhou Z, Sun T, Wang L, Meng H, Zhang H, Chen W: Complete genome sequence of Lactobacillus delbrueckii subsp. bulgaricus strain ND02. J Bacteriol 2011, 193(13):3426-3427.
  • [11]Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M: ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006, 34(Database issue):D32-D36.
  • [12]Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28(1):27-30.
  • [13]Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M: KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic acids research 2007, 35(Web Server issue):W182-W185.
  • [14]Yamada T, Letunic I, Okuda S, Kanehisa M, Bork P: iPath2.0: interactive pathway explorer. Nucleic Acids Res 2011, 39(Web Server issue):W412-W415.
  • [15]Hickey MW, Hillier AJ, Jago GR: Transport and metabolism of lactose, glucose, and galactose in homofermentative lactobacilli. Appl Environ Microbiol 1986, 51(4):825-831.
  • [16]Poolman B, Royer TJ, Mainzer SE, Schmidt BF: Lactose transport system of Streptococcus thermophilus: a hybrid protein with homology to the melibiose carrier and enzyme III of phosphoenolpyruvate-dependent phosphotransferase systems. J Bacteriol 1989, 171(1):244-253.
  • [17]Poolman B: Precursor/product antiport in bacteria. Microbiol Biotechnol 1990, 4(10):1629-1636.
  • [18]Gilbert C, Atlan D, Blanc B, Portailer R, Germond JE, Lapierre L, Mollet B: A new cell surface proteinase: sequencing and analysis of the prtB gene from Lactobacillus delbruekii subsp. bulgaricus. J Bacteriol 1996, 178(11):3059-3065.
  • [19]van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E: Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek 2002, 82(1–4):187-216.
  • [20]Lapierre L, Mollet B, Germond JE: Regulation and adaptive evolution of lactose operon expression in Lactobacillus delbrueckii. J Bacteriol 2002, 184(4):928-935.
  • [21]Gilbert C, Blanc B, Frot-Coutaz J, Portalier R, Atlan D: Comparison of cell surface proteinase activities within the Lactobacillus genus. J Dairy Res 1997, 64:561-571.
  • [22]Rissman AI, Mau B, Biehl BS, Darling AE, Glasner JD, Perna NT: Reordering contigs of draft genomes using the Mauve aligner. Bioinform 2009, 25(16):2071-2073.
  • [23]Bryson K, Loux V, Bossy R, Nicolas P, Chaillou S, van de Guchte M, Penaud S, Maguin E, Hoebeke M, Bessieres P, Gibrat JF: AGMIAL: implementing an annotation strategy for prokaryote genomes as a distributed system. Nucleic Acids Res 2006, 34(12):3533-3545.
  • [24]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
  • [25]Perriere G, Gouy M: WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 1996, 78(5):364-369.
  • [26]Thompson JD, Gibson TJ, Higgins DG: Multiple sequence alignment using ClustalW and ClustalX. Current protocols in bioinformatics/editoral board, Andreas D Baxevanis 2002. Chapter 2:Unit 2 3
  文献评价指标  
  下载次数:49次 浏览次数:40次