BMC Genomics | |
Comparative genome analysis of Wolbachia strain wAu | |
Steven P Sinkins2  Julian Parkhill1  Simon R Harris1  Elizabeth R Sutton3  | |
[1] Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK;Biomedical and Life Sciences, Lancaster University, Lancaster, UK;Department of Zoology and Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK | |
关键词: PacBio sequencing; Transcriptional regulator; Prophage; Cytoplasmic incompatibility; Genome; wMel; wAu; Wolbachia; | |
Others : 1128429 DOI : 10.1186/1471-2164-15-928 |
|
received in 2014-04-22, accepted in 2014-10-15, 发布年份 2014 | |
【 摘 要 】
Background
Wolbachia intracellular bacteria can manipulate the reproduction of their arthropod hosts, including inducing sterility between populations known as cytoplasmic incompatibility (CI). Certain strains have been identified that are unable to induce or rescue CI, including wAu from Drosophila. Genome sequencing and comparison with CI-inducing related strain wMel was undertaken in order to better understand the molecular basis of the phenotype.
Results
Although the genomes were broadly similar, several rearrangements were identified, particularly in the prophage regions. Many orthologous genes contained single nucleotide polymorphisms (SNPs) between the two strains, but a subset containing major differences that would likely cause inactivation in wAu were identified, including the absence of the wMel ortholog of a gene recently identified as a CI candidate in a proteomic study. The comparative analyses also focused on a family of transcriptional regulator genes implicated in CI in previous work, and revealed numerous differences between the strains, including those that would have major effects on predicted function.
Conclusions
The study provides support for existing candidates and novel genes that may be involved in CI, and provides a basis for further functional studies to examine the molecular basis of the phenotype.
【 授权许可】
2014 Sutton et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150223074853477.pdf | 2768KB | download | |
Figure 9. | 49KB | Image | download |
Figure 8. | 45KB | Image | download |
Figure 7. | 135KB | Image | download |
Figure 6. | 73KB | Image | download |
Figure 5. | 125KB | Image | download |
Figure 4. | 85KB | Image | download |
Figure 3. | 82KB | Image | download |
Figure 2. | 96KB | Image | download |
Figure 1. | 106KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
【 参考文献 】
- [1]Zug R, Hammerstein P: Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One 2012, 7:e38544.
- [2]Werren JH, Baldo L, Clark ME: Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 2008, 6:741-751.
- [3]Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O’Neill SL: A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell 2009, 139:1268-1278.
- [4]Bian G, Xu Y, Lu P, Xie Y, Xi Z: The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog 2010, 6:e1000833.
- [5]Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SL, O’Neill SL, Hoffmann AA: The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 2011, 476:450-453.
- [6]Blagrove MS, Arias-Goeta C, Failloux AB, Sinkins SP: Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. Proc Natl Acad Sci U S A 2012, 109:255-260.
- [7]Blagrove MS, Arias-Goeta C, Di Genua C, Failloux AB, Sinkins SP: A Wolbachia wMel transinfection in Aedes albopictus is not detrimental to host fitness and inhibits chikungunya virus. PLoS Negl Trop Dis 2013, 7:e2152.
- [8]Kambris Z, Cook PE, Phuc HK, Sinkins SP: Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science 2009, 326:134-136.
- [9]Kambris Z, Blagborough AM, Pinto SB, Blagrove MS, Godfray HC, Sinden RE, Sinkins SP: Wolbachia stimulates immune gene expression and inhibits plasmodium development in Anopheles gambiae. PLoS Pathog 2010, 6:e1001143.
- [10]Hughes GL, Koga R, Xue P, Fukatsu T, Rasgon JL: Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae. PLoS Pathog 2011, 7:e1002043.
- [11]Bian G, Joshi D, Dong Y, Lu P, Zhou G, Pan X, Xu Y, Dimopoulos G, Xi Z: Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science 2013, 340:748-751.
- [12]Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y, Cook H, Axford J, Callahan AG, Kenny N, Omodei C, McGraw EA, Ryan PA, Ritchie SA, Turelli M, O’Neill SL: Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 2011, 476:454-457.
- [13]Hoffmann AA, Clancy D, Duncan J: Naturally-occurring Wolbachia infection in Drosophila simulans that does not cause cytoplasmic incompatibility. Heredity 1996, 76:1-8.
- [14]James AC, Ballard JW: Expression of cytoplasmic incompatibility in Drosophila simulans and its impact on infection frequencies and distribution of Wolbachia pipientis. Evolution 2000, 54:1661-1672.
- [15]Reynolds KT, Hoffmann AA: Male age, host effects and the weak expression or non-expression of cytoplasmic incompatibility in Drosophila strains infected by maternally transmitted Wolbachia. Genet Res 2002, 80:79-87.
- [16]Charlat S, Le Chat L, Merçot H: Characterization of non-cytoplasmic incompatibility inducing Wolbachia in two continental African populations of Drosophila simulans. Heredity 2003, 90:49-55.
- [17]Kriesner P, Hoffmann A, Lee SF, Turelli M, Weeks AR: Rapid sequential spread of two Wolbachia variants in Drosophila simulans. PLoS Pathog 2013, 9:e1003607.
- [18]Osborne SE, Leong YS, O’Neill SL, Johnson KN: Variation in antiviral protection mediated by different Wolbachia strains in Drosophila simulans. PLoS Pathog 2009, 5:e1000656.
- [19]Iturbe-Ormaetxe I, Burke GR, Riegler M, O’Neill SL: Distribution, expression, and motif variability of ankyrin domain genes in Wolbachia pipientis. J Bacteriol 2005, 187:5136-5145.
- [20]Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA, Martin W, Esser C, Ahmadinejad N, Wiegand C, Madupu R, Beanan MJ, Brinkac LM, Daugherty SC, Durkin AS, Kolonay JF, Nelson WC, Mohamoud Y, Lee P, Berry K, Young MB, Utterback T, Weidman J, Nierman WC, Paulsen IT, Nelson KE, Tettelin H, O’Neill SL, Eisen JA: Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2004, 2:E69.
- [21]Klasson L, Walker T, Sebaihia M, Sanders MJ, Quail MA, Lord A, Sanders S, Earl J, O’Neill SL, Thomson N, Sinkins SP, Parkhill J: Genome evolution of Wolbachia strain wPip from the Culex pipiens group. Mol Biol Evol 2008, 25:1877-1887.
- [22]Pinto SB, Stainton K, Harris S, Kambris Z, Sutton ER, Bonsall MB, Parkhill J, Sinkins SP: Transcriptional Regulation of Culex pipiens mosquitoes by Wolbachia influences cytoplasmic incompatibility. PLoS Pathog 2013, 9:e1003647.
- [23]Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, Bhattacharyya A, Kapatral V, Kumar S, Posfai J, Vincze T, Ingram J, Moran L, Lapidus A, Omelchenko M, Kyrpides N, Ghedin E, Wang S, Goltsman E, Joukov V, Ostrovskaya O, Tsukerman K, Mazur M, Comb D, Koonin E, Slatko B: The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 2005, 3:e121.
- [24]Klasson L, Westberg J, Sapountzis P, Naslund K, Lutnaes Y, Darby AC, Veneti Z, Chen L, Braig HR, Garrett R, Bourtzis K, Andersson SG: The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans. Proc Natl Acad Sci U S A 2009, 106:5725-5730.
- [25]Mavingui P, Valiente Moro C, Tran-Van V, Wisniewski-Dye F, Raquin V, Minard G, Tran FH, Voronin D, Rouy Z, Bustos P, Lozano L, Barbe V, González V: Whole-Genome Sequence of Wolbachia Strain wAlbB, an Endosymbiont of Tiger Mosquito Vector Aedes albopictus. J Bacteriol 2012, 194:1840.
- [26]Ellegaard KM, Klasson L, Näslund K, Bourtzis K, Andersson SG: Comparative genomics of Wolbachia and the bacterial species concept. PLoS Genet 2013, 9:e1003381.
- [27]Iturbe-Ormaetxe I, Woolfit M, Rancès E, Duplouy A, O’Neill SL: A simple protocol to obtain highly pure Wolbachia endosymbiont DNA for genome sequencing. J Microbiol Methods 2011, 84:134-136.
- [28]Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y: A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 2012, 13:341. BioMed Central Full Text
- [29]Au KF, Underwood JG, Lee L, Wong WH: Improving PacBio long read accuracy by short read alignment. PLoS One 2012, 7:e46679.
- [30]Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang Z, Rasko DA, McCombie WR, Jarvis ED, Phillippy AM: Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 2012, 30:693-700.
- [31]Ribeiro FJ, Przybylski D, Yin S, Sharpe T, Gnerre S, Abouelleil A, Berlin AM, Montmayeur A, Shea TP, Walker BJ, Young SK, Russ C, Nusbaum C, MacCallum I, Jaffe DB: Finished bacterial genomes from shotgun sequence data. Genome Res 2012, 22(11):2270-2277.
- [32]Masui S, Kuroiwa H, Sasaki T, Inui M, Kuroiwa T, Ishikawa H: Bacteriophage WO and virus-like particles in Wolbachia, an endosymbiont of arthropods. Biochem Biophys Res Commun 2001, 283:1099-1104.
- [33]McGraw EA, Merritt DJ, Droller JN, O’Neill SL: Wolbachia-mediated sperm modification is dependent on the host genotype in Drosophila. Proc Biol Sci 2001, 268(1485):2565-2570.
- [34]Sinkins SP, Walker T, Lynd A, Steven A, Makepeace B, Godfray HCJ, Parkhill J: Wolbachia variability and host effects on crossing type in Culex mosquitoes. Nature 2005, 436(7048):257-260.
- [35]Zabalou S, Apostolaki A, Pattas S, Veneti Z, Paraskevopoulos C, Livadaras I, Markakis G, Brissac T, Merçot H, Bourtzis K: Multiple rescue factors within a Wolbachia strain. Genetics 2008, 178(4):2145-2160.
- [36]Beckmann JF, Fallon AM: Detection of the Wolbachia Protein WPIP0282 in Mosquito Spermathecae: Implications for Cytoplasmic Incompatibility. Insect Biochem Mol Biol 2013, 43(9):867-878.
- [37]Ross W, Gosink KK, Salomon J, Igarashi K, Zou C, Ishihama A, Severinov K, Gourse RL: A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science 1993, 262:1407-1413.
- [38]Yamada R, Iturbe-Ormaetxe I, Brownlie JC, O’Neill SL: Functional test of the influence of Wolbachia genes on cytoplasmic incompatibility expression in Drosophila melanogaster. Insect Mol Biol 2011, 20:75-85.
- [39]Livak KJ: Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics 1984, 107:611-634.
- [40]Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, Swerdlow H, Turner DJ: A large genome center’s improvements to the Illumina sequencing system. Nat Methods 2008, 5:1005-1010.
- [41]Quail MA, Swerdlow H, Turner DJ: Improved protocols for the illumina genome analyzer sequencing system. Curr Protoc Hum Genet 2009, Chapter 18(Unit 18):12.
- [42]Quail MA, Otto TD, Gu Y, Harris SR, Skelly TF, McQuillan JA, Swerdlow HP, Oyola SO: Optimal enzymes for amplifying sequencing libraries. Nat Methods 2012, 9:10-11.
- [43]Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008, 18(5):821-829.
- [44]Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J: Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013, 10:563-569.
- [45]SMALT. [http://www.sanger.ac.uk/resources/software/smalt/ webcite]
- [46]Otto TD, Sanders M, Berriman M, Newbold C: Iterative Correction of Reference Nucleotides (iCORN) using second generation sequencing technology. Bioinformatics 2013, 26(14):1704-7.
- [47]Prokka: Prokaryotic Genome Annotation System. [http://vicbioinformatics.com/ webcite]
- [48]Nawrocki EP, Eddy SR: Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 2013, 29:2933-2935.
- [49]Laslett D, Canback B: ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 2004, 32:11-16.
- [50]Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T, Ussery DW: RNammer: consistent annotation of rRNA genes in genomic sequences. Nucleic Acids Res 2007, 35(9):3100-3108.
- [51]Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ: Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010, 11:119. BioMed Central Full Text
- [52]Pruitt KD, Tatusova T, Klimke W, Maglott DR: NCBI Reference Sequences: current status, policy and new initiatives. Nucleic Acids Res 2009, 37:D32-36.
- [53]Fu L, Niu B, Zhu Z, Wu S, Li W: CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28:3150-3152.
- [54]Consortium U: Update on activities at the Universal Protein Resource (UniProt) in 2013. Nucleic Acids Res 2013, 41:D43-47.
- [55]Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J: ACT: the Artemis Comparison Tool. Bioinformatics 2005, 21:3422-3423.
- [56]Geneious version 7.0.5 created by Biomatters. [http://www.geneious.com webcite]
- [57]Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, de Castro E, Coggill P, Corbett M, Das U, Daugherty L, Duquenne L, Finn RD, Fraser M, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, et al.: InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 2012, 40:D306-312.
- [58]SNAP v1.1.1. [http://www.hiv.lanl.gov webcite]
- [59]Korber B: HIV Signature and Sequence Variation Analysis. In Computational Analysis of HIV Molecular Sequences. Edited by Rodrigo AG, Learn GH. Dordrecht, Netherlands: Kluwer Academic Publishers; 2000:55-72.
- [60]The Gene Ontology Consortium: Gene ontology: tool for the unification of biology. Nat Genet 2000, 25(1):25-9.
- [61]Sonhammer ELL, Durbin R: A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 1995, 167:GC1-10.