期刊论文详细信息
BMC Research Notes
Evaluation of reference genes for reverse transcription quantitative PCR analyses of fish-pathogenic Francisella strains exposed to different growth conditions
Samuel Duodu1  Duncan John Colquhoun1  Hanne Cecilie Winther-Larsen2  Espen Brudal3 
[1] Section for Bacteriology, Norwegian Veterinary Institute, PO Box 750, 0106, Sentrum, Oslo, Norway;School of Pharmacy, University of Oslo, PO Box 1068, Blindern, Oslo 0316, Norway;Laboratory for Microbial Dynamics (LaMDa), University of Oslo, PO Box 1068, Blindern, Oslo 0316, Norway
关键词: Francisellosis;    Fish;    Francisella noatunensis;    RT-qPCR;    Gene expression;   
Others  :  1143371
DOI  :  10.1186/1756-0500-6-76
 received in 2012-12-21, accepted in 2013-02-27,  发布年份 2013
PDF
【 摘 要 】

Background

Reverse transcription quantitative PCR has become a powerful technique to monitor mRNA transcription in response to different environmental conditions in many bacterial species. However, correct evaluation of data requires accurate and reliable use of reference genes whose transcription does not change during the course of the experiment. In the present study exposure to different growth conditions was used to validate the transcription stability of eight reference gene candidates in three strains from two subspecies of Francisella noatunensis, a pathogen causing disease in both warm and cold water fish species.

Results

Relative transcription levels for genes encoding DNA gyrase (gyrA), RNA polymerase beta subunit (rpoB), DNA polymerase I (polA), cell division protein (ftsZ), outer membrane protein (fopA), riboflavin biosynthesis protein (ribC), 16S ribosomal RNA (16S rRNA) and DNA helicases (uvrD) were quantified under exponential, stationary and iron-restricted growth conditions. The suitability of selected reference genes for reliable interpretation of gene expression data was tested using the virulence-associated intracellular growth locus subunit C (iglC) gene.

Conclusion

Although the transcription stability of the reference genes was slightly different in the three strains studied, fopA, ftsZ and polA proved to be the most stable and suitable for normalization of gene transcription in Francisella noatunensis ssp.

【 授权许可】

   
2013 Brudal et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329053044167.pdf 699KB PDF download
Figure 3. 45KB Image download
Figure 2. 65KB Image download
Figure 1. 72KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Kamaishi T, Fukuda Y, Nishiyama M, Kawakami M, Matsuyama T, Yoshinaga T, Oseko N: Identification and pathogenicity of intracellular Francisella bacterium in three-line grunt Parapristipoma trilineatum. Fish Pathology 2005, 40:67-71.
  • [2]Birkbeck TH, Bordevik M, Frøystad MK, Baklien A: Identification of Francisella sp. from Atlantic salmon, Salmo salar L., in Chile. J Fish Dis 2007, 30:505-507.
  • [3]Mauel MJ, Soto E, Moralis JA, Hawke J: A piscirickettsiosis-like syndrome in cultured Nile tilapia in Latin America with Francisella spp. as the pathogenic agent. J Aquat Anim Health 2007, 19:27-34.
  • [4]Jeffery KR, Stone D, Feist SW, Verner-Jeffreys DW: An outbreak of disease caused by Francisella sp. in Nile tilapia Oreochromis niloticus at a recirculation fish farm in the UK. Dis Aquat Organ 2010, 91:161-165.
  • [5]Sjödin A, Svensson K, Öhrman C, Ahlinder J, Lindgren P, Duodu S, Hnath J, Burans JP, Johansson A, Colquhoun DJ: Genome characterisation of the genus Francisella reveals insight into similar evolutionary paths in pathogens of mammals and fish. BMC Genomics 2012, 13:268. BioMed Central Full Text
  • [6]Nano FE, Zhang N, Cowley SC, Klose KE, Cheung KK, Roberts MJ, Ludu JS, Letendre GW, Meierovics AI, Stephens G: A Francisella tularensis pathogenicity island required for intramacrophage growth. J Bacteriol 2004, 186:6430-6436.
  • [7]Larsson P, Oyston PC, Chain P, Chu MC, Duffield M, Fuxelius HH, Garcia E, Hälltorp G, Johansson D, Isherwood KE, Karp PD, Larsson E, Liu Y, Michell E, Prior J, Prior R, Malfatti S, Sjöstedt A, Svensson K, Thompson N, Vergez L, Wagg JK, Wren BW, Lindler LE, Andersson SG, Forsman M, Titball RW: The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat Genet 2005, 37:153-159.
  • [8]Soto E, Fernandez D, Hawke JP: Attenuation of the fish pathogen Francisella sp. by mutation of the iglC* gene. J Aquat Anim Health 2009, 21:140-149.
  • [9]Soto E, Wiles J, Elzer P, Macaluso K, Hawke JP: Attenuated Francisella asiatica iglC mutant induces protective immunity to francisellosis in tilapia. Vaccine 2010, 29(3):593-598.
  • [10]Dheda K, Huggett JF, Chang JS, Kim LU, Bustin SA, Johnson MA, Rook GA, Zumla A: The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem 2005, 344:141-143.
  • [11]Gutierrez L, Mauriat M, Guenin S, Pelloux J, Lefebvre JF, Louvet R, Rusterucci C, Moritz T, Guerineau F, Bellini C: The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol J 2008, 6:609-618.
  • [12]Vandesompele J, De PK, Pattyn F, Poppe B, Van RN, De PA, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3:RESEARCH0034.1-RESEARCH0034.11.
  • [13]Huggett J, Dheda K, Bustin S, Zumla A: Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 2005, 6:279-284.
  • [14]Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL: The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009, 55:611-622.
  • [15]Bustin SA: Why the need for qPCR publication guidelines?–The case for MIQE. Methods 2010, 50:217-226.
  • [16]Olsen AB, Mikalsen J, Rode M, Alfjorden A, Hoel E, Straum-Lie K, Haldorsen R, Colquhoun DJ: A novel systemic granulomatous inflammatory disease in farmed Atlantic cod, Gadus morhua L., associated with a bacterium belonging to the genus Francisella. J Fish Dis 2006, 29:307-311.
  • [17]Ottem KF, Nylund A, Isaksen TE, Karlsbakk E, Bergh Ø: Occurrence of Francisella piscicida in farmed and wild Atlantic cod, Gadus morhua L., in Norway. J Fish Dis 2008, 31:525-534.
  • [18]BioRad technical note 5396. http://www3.biorad.com/cmc_upload/Literature/195246/Bulletin_5396.pdf webcite
  • [19]Furevik A, Pettersen EF, Colquhoun D, Wergeland HI: The intracellular lifestyle of Francisella noatunensis in Atlantic cod (Gadus morhua L.) leucocytes. Fish Shellfish Immunol 2011, 30:488-494.
  • [20]Deng K, Blick RJ, Liu W, Hansen EJ: Identification of Francisella tularensis genes affected by iron limitation. Infect Immun 2006, 74:4224-4236.
  • [21]Hazlett KRO, Cirillo KA: Environmental Adaptation of Francisella tularensis. Microbes Infect 2009, 11:828-834.
  • [22]Derzelle S, Dilasser F, Duquenne M, Deperrois V: Differential temporal expression of the staphylococcal enterotoxins genes during cell growth. Food Microbiol 2009, 26:896-904.
  • [23]Navarro Llorens JM, Tormo A, Martinez-Garcia E: Stationary phase in gram-negative bacteria. FEMS Microbiol Rev 2010, 34:476-495.
  • [24]Nielsen KK, Boye M: Real-time quantitative reverse transcription-PCR analysis of expression stability of Actinobacillus pleuropneumoniae housekeeping genes during in vitro growth under iron-depleted conditions. Appl Environ Microbiol 2005, 71(6):2949-2954.
  • [25]Botteldoorn N, Van Coillie E, Grijspeerdt K, Werbrouck H, Haesebrouck F, Donné E, D'Haese E, Heyndrickx M, Pasmans F, Herman L: Real-time reverse transcription PCR for the quantification of the mntH expression of Salmonella enterica as a function of growth phase and phagosome-like conditions. J Microbiol Methods 2006, 66:125-135.
  • [26]Tasara T, Stephan R: Evaluation of housekeeping genes in Listeria monocytogenes as potential internal control references for normalizing mRNA expression levels in stress adaptation models using real-time PCR. FEMS Microbiol Lett 2007, 269:265-272.
  • [27]Soto E, Fernandez D, Thune R, Hawke JP: Interaction of Francisella asiatica with tilapia (Oreochromis niloticus) innate immunity. Infect Immun 2010, 78:2070-2078.
  • [28]Byrne B, Swanson MS: Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun 1998, 66:3029-3034.
  • [29]Kumar A, Bose M, Brahmachari V: Analysis of expression profile of mammalian cell entry (mce) operons of Mycobacterium tuberculosis. Infect Immun 2003, 71:6083-6087.
  • [30]Wehrly TD, Chong A, Virtaneva K, Sturdevant DE, Child R, Edwards JA, Brouwer D, Nair V, Fischer ER, Wicke L: Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages. Cell Microbiol 2009, 11:1128-1150.
  • [31]Ramakrishnan G, Meeker A, Dragulev B: fslE is necessary for siderophore-mediated iron acquisition in Francisella tularensis Schu S4. J Bacteriol 2008, 190:5353-5361.
  • [32]Carlson PE Jr, Carroll JA, O'Dee DM, Nau GJ: Modulation of virulence factors in Francisella tularensis determines human macrophage responses. Microb Pathog 2007, 42:204-214.
  • [33]Horzempa J, Carlson PE Jr, O'Dee DM, Shanks RM, Nau GJ: Global transcriptional response to mammalian temperature provides new insight into Francisella tularensis pathogenesis. BMC Microbiol 2008, 8:172. BioMed Central Full Text
  • [34]Postic G, Frapy E, Dupuis M, Dubail I, Livny J, Charbit A, Meibom KL: Identification of small RNAs in Francisella tularensis. BMC Genomics 2010, 11:625. BioMed Central Full Text
  • [35]Grall N, Livny J, Waldor M, Barel M, Charbit A, Meibom KL: Pivotal role of the Francisella tularensis heat-shock sigma factor RpoH. Microbiology 2009, 155:2560-2572.
  • [36]Soni S, Ernst RK, Muszynski A, Mohapatra NP, Berry MP, Vinogradov E, Carlson RW, Gunn JS: Francisella tularensis blue–gray phase variation involves structural modifications of lipopolysaccharide O-antigen, core and lipid A and affects intramacrophage survival and vaccine efficacy. Front Microbiol 2011, 1:129.
  • [37]Sullivan JT, Jeffery EF, Shannon JD, Ramakrishnan G: Characterization of the siderophore of Francisella tularensis and role of fslA in siderophore production. J Bacteriol 2006, 188:3785-3795.
  • [38]Charity JC, Costante-Hamm MM, Balon EL, Boyd DH, Rubin EJ, Dove SL: Twin RNA polymerase-associated proteins control virulence gene expression in Francisella tularensis. PLoS Pathog 2007, 3(6):e84.
  • [39]Buchan BW, McCaffrey RL, Lindemann SR, Allen LA, Jones BD: Identification of migR, a regulatory element of the Francisella tularensis live vaccine strain iglABCD virulence operon required for normal replication and trafficking in macrophages. Infect Immun 2009, 77:2517-2529.
  • [40]Bell BL, Mohapatra NP, Gunn JS: Regulation of virulence gene transcripts by the Francisella novicida orphan response regulator PmrA: role of phosphorylation and evidence of MglA/SspA interaction. Infect Immun 2010, 78:2189-2198.
  • [41]Mohapatra NP, Soni S, Bell BL, Warren R, Ernst RK, Muszynski A, Carlson RW, Gunn JS: Identification of an orphan response regulator required for the virulence of Francisella spp. and transcription of pathogenicity island genes. Infect Immun 2007, 75:3305-3314.
  • [42]Brotcke A, Weiss DS, Kim CC, Chain P, Malfatti S, Garcia E, Monack DM: Identification of MglA-regulated genes reveals novel virulence factors in Francisella tularensis. Infect Immun 2006, 74:6642-6655.
  • [43]Brotcke A, Monack DM: Identification of fevR, a novel regulator of virulence gene expression in Francisella novicida. Infect Immun 2008, 76:3473-3480.
  文献评价指标  
  下载次数:38次 浏览次数:10次