期刊论文详细信息
BMC Genetics
Genotyping errors in a calibrated DNA register: implications for identification of individuals
Hans J Skaug1  Bjørghild B Seliussen1  Kevin A Glover1  Øystein A Haaland2 
[1]Institute of Marine Research. P.O. Box 1870, Nordnes. N- 5817 Bergen, Norway
[2]Department of Mathematics, University of Bergen, Johannes Brunsgate 12, 5008 Bergen, Norway
关键词: wildlife;    mixed logistic regression;    minke whale;    microsatellite;    genotyping error;    DNA register;    Calibration;   
Others  :  1129321
DOI  :  10.1186/1471-2156-12-36
 received in 2010-11-30, accepted in 2011-04-20,  发布年份 2011
PDF
【 摘 要 】

Background

The use of DNA methods for the identification and management of natural resources is gaining importance. In the future, it is likely that DNA registers will play an increasing role in this development. Microsatellite markers have been the primary tool in ecological, medical and forensic genetics for the past two decades. However, these markers are characterized by genotyping errors, and display challenges with calibration between laboratories and genotyping platforms. The Norwegian minke whale DNA register (NMDR) contains individual genetic profiles at ten microsatellite loci for 6737 individuals captured in the period 1997-2008. These analyses have been conducted in four separate laboratories for nearly a decade, and offer a unique opportunity to examine genotyping errors and their consequences in an individual based DNA register. We re-genotyped 240 samples, and, for the first time, applied a mixed regression model to look at potentially confounding effects on genotyping errors.

Results

The average genotyping error rate for the whole dataset was 0.013 per locus and 0.008 per allele. Errors were, however, not evenly distributed. A decreasing trend across time was apparent, along with a strong within-sample correlation, suggesting that error rates heavily depend on sample quality. In addition, some loci were more error prone than others. False allele size constituted 18 of 31 observed errors, and the remaining errors were ten false homozygotes (i.e., the true genotype was a heterozygote) and three false heterozygotes (i.e., the true genotype was a homozygote).

Conclusions

To our knowledge, this study represents the first investigation of genotyping error rates in a wildlife DNA register, and the first application of mixed models to examine multiple effects of different factors influencing the genotyping quality. It was demonstrated that DNA registers accumulating data over time have the ability to maintain calibration and genotyping consistency, despite analyses being conducted on different genotyping platforms and in different laboratories. Although errors were detected, it is demonstrated that if the re-genotyping of individual samples is possible, these will have a minimal effect on the database's primary purpose, i.e., to perform individual identification.

【 授权许可】

   
2011 Haaland et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150226032853796.pdf 272KB PDF download
Figure 1. 21KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Choudhary M, Strassmann JE, Solis CR, Queller DC: Microsatellite Variation in a Social Insect. Biochemical Genetics 1993, 31(1-2):87-96.
  • [2]Litt M, Luty JA: A Hypervariable Microsatellite Revealed by Invitro Amplification of a Dinucleotide Repeat within the Cardiac-Muscle Actin Gene. American Journal of Human Genetics 1989, 44(3):397-401.
  • [3]Jarne P, Lagoda PJL: Microsatellites, from molecules to populations and back. Trends in Ecology & Evolution 1996, 11(10):424-429.
  • [4]Luikart G, England PR: Statistical analysis of microsatellite DNA data. Trends in Ecology & Evolution 1999, 14(7):253-256.
  • [5]Queller DC, Strassmann JE, Hughes CR: Microsatellites and Kinship. Trends in Ecology & Evolution 1993, 8(8):285-&.
  • [6]Pasqualotto AC, Denning DW, Anderson MJ: A cautionary tale: Lack of consistency in allele sizes between two laboratories for a published multilocus microsatellite typing system. Journal of Clinical Microbiology 2007, 45(2):522-528.
  • [7]Hoffman JI, Amos W: Microsatellite genotyping errors: detection approaches, common sources and consequences for paternal exclusion. Molecular Ecology 2005, 14(2):599-612.
  • [8]Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochman C, Taberlet P: How to track and assess genotyping errors in population genetics studies. Molecular Ecology 2004, 13(11):3261-3273.
  • [9]Pompanon F, Bonin A, Bellemain E, Taberlet P: Genotyping errors: Causes, consequences and solutions. Nature Reviews Genetics 2005, 6(11):847-859.
  • [10]Marshall TC, Marshall TC, Slate J, Kruuk LEB, Pemberton JM: Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology 1998, 7(5):639-655.
  • [11]Baker CS, Steel D, Choi Y, Lee H, Kim KS, Choi SK, Ma Y-U, Hambleton C, Psihoyos L, Brownell RL, Funahashi N: Genetic evidence of illegal trade in protected whales links Japan with the US and South Korea. Biology letters 2010, 6(5):647-650.
  • [12]Palsboll PJ, Berube M, Skaug HJ, Raymakers C: DNA registers of legally obtained wildlife and derived products as means to identify illegal takes. Conservation Biology 2006, 20(4):1284-1293.
  • [13]Withler RE, Candy JR, Beacham TD, Miller KM: Forensic DNA analysis of Pacific salmonid samples for species and stock identification. Environmental Biology of Fishes 2004, 69(1-4):275-285.
  • [14]Hebert PDN, Cywinska A, Ball SL, deWaard JR: Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Series B-Biological Sciences 2003, 270(1512):313-321.
  • [15]Baric S, Monschein S, Hofer M, Grill D, Dalla Via J: Comparability of genotyping data obtained by different procedures an inter-laboratory survey. Journal of Horticultural Science & Biotechnology 2008, 83(2):183-190.
  • [16]de Valk HA, Meis JFGM, Bretagne S, Costa J-M, Lasker BA, Balajee SA, Pasqualotto AC, Anderson MJ, Alcazar-Fuoli L, Klaassen CHW: Interlaboratory reproducibility of a microsatellite-based typing assay for Aspergillus fumigatus through the use of allelic ladders: proof of concept. Clin Microbial Infect 2009, 15:180-187.
  • [17]Ellis JS, Gilbey J, Armstrong A, Balstad T, Cauwelier E, Cherbonnel C, Consuegra S, Coughlan J, Cross TF, Crozier W, Dillane E, Ensing D, Garcia de Leaniz C, Garcia-Vazquez E, Griffiths AM, Hindar K, Hjorleifsdottir S, Knox D, Machado-Schiaffino G, McGinnity P, Meldrup D, Nielsen EE, Olafsson K, Primmer CR, Prodohl P, Stradmeyer L, Vaha JP, Verspoor E, Wennevik V, Stevens JR: Microsatellite standardization and evaluation of genotyping error in a large multi-partner research programme for conservation of Atlantic salmon (Salmo salar L.). Genetica 2011, 139(3):353-67.
  • [18]Berube M, Jørgensen H, McEwing R, Palsbøll PJ: Polymorphic di-nucleotide microsatellite loci isolated from the humpback whale, Megaptera novaeangliae. Molecular Ecology 2000, 9(12):2181-3.
  • [19]Palsboll PJ, Allen J, Berube M, Clapham PJ, Feddersen TP, Hammond PS, Hudson RS, Jørgensen H, Katona S, Larsen AH, Larsen F, Lien J, Sears R, Smith T, Sponer R, Stevick P, Øien N: Genetic tagging of humpback whales. Nature 1997, 388(6644):767-769.
  • [20]Valsecchi E, Amos W: Microsatellite markers for the study of cetacean populations. Molecular Ecology 1996, 5(1):151-156.
  • [21]Glover KA, Kanda N, Haug T, Pastene LA, Øien N, Goto M, Seliussen BB, Skaug HJ: Migration of Antarctic Minke Whales to the Arctic. PLos ONE 2010, 5(12):e15197.
  • [22]Pinheiro JC, Bates DM: Mixed-Effects Models in S and S-plus. In Statistics and Computing. Edited by Chambers J, Eddy W, Härdle W, Sheater S, Tierney L. Springer; 2000.
  • [23]Broquet T, Petit E: Quantifying genotyping errors in noninvasive population genetics. Molecular Ecology 2004, 13(11):3601-3608.
  • [24]Johnson PCD, Haydon DT: Maximum-likelihood estimation of allelic dropout and false allele error rates from Microsatellite genotypes in the absence of reference data. Genetics 2007, 175(2):827-842.
  • [25]Akaike H: New Look at Statistical-Model Identification. Ieee Transactions on Automatic Control 1974, Ac19(6):716-723.
  • [26]Burnham KP, Anderson DR: Model selection and multi-model inference: A practical information-theoretic approach. 2nd edition. New York, NY: Springer-Verlag; 2002:488.
  • [27]Paetkau D: An empirical exploration of data quality in DNA-based population inventories. Molecular Ecology 2003, 12(6):1375-1387.
  • [28]Zhang HM, Stern H: Assessment of ancestry probabilities in the presence of genotyping errors. Theoretical and Applied Genetics 2006, 112(3):472-482.
  • [29]Mitchell AA, Cutler DJ, Chakravarti A: Undetected genotyping errors cause apparent overtransmission of common alleles in the transmission/disequilibrium test. American Journal of Human Genetics 2003, 72(3):598-610.
  • [30]Schaid DJ, Guenther JC, Christensen GB, Hebbring S, Rosenow C, Hilker CA, McDonnel SK, Cunningham JM, Slager SL, Blute ML, Thibodeau SN: Comparison of microsatellites versus single-nucleotide polymorphisms in a genome linkage screen for prostate cancer-susceptibility loci. American Journal of Human Genetics 2004, 75(6):948-965.
  • [31]Ewen KR, Bahlo M, Treloar SA, Levinson DF, Mowry B, Barlow JW, Foote SJ: Identification and analysis of error types in high-throughput genotyping. American Journal of Human Genetics 2000, 67(3):727-736.
  • [32]Bjorklund M: A method for adjusting allele frequencies in the case of microsatellite allele drop-out. Molecular Ecology Notes 2005, 5(3):676-679.
  • [33]Buchan JC, Archie EA, van Horn RC, Moss CJ, Alberts SC: Locus effects and sources of error in noninvasive genotyping. Molecular Ecology Notes 2005, 5(3):680-683.
  • [34]DeWoody J, Nason JD, Hipkins VD: Mitigating scoring errors in microsatellite data from wild populations. Molecular Ecology Notes 2006, 6(4):951-957.
  • [35]Morin PA, LeDuc RG, Archer E, Martien KK, Taylor BL, Huebinger R, Bickham JW: Estimated genotype error rates from bowhead whale microsatellite data. [http://iwcoffice.org/_documents/sci_com/workshops/SC-59-BRG15%28draft%29.pdf] webcite 2007. Unpublished
  • [36]Flagstad O, Hedmark E, Landa A, Brøseth H, Persson J, Andersen R, Segerstrom P, Ellegren H: Colonization history and noninvasive monitoring of a reestablished wolverine population. Conservation Biology 2004, 18(3):676-688.
  • [37]Mowat G, Paetkau D: Estimating marten Martes americana population size using hair capture and genetic tagging. Wildlife Biology 2002, 8(3):201-209.
  • [38]Pearse DE, Eckerman M, Janzen FJ, Avise C: A genetic analogue of 'mark-recapture' methods for estimating population size: an approach based on molecular parentage assessments. Molecular Ecology 2001, 10(11):2711-2718.
  • [39]Poole KG, Mowat G, Fear DA: DNA-based population estimate for grizzly bears Ursus arctos in northeastern British Columbia, Canada. Wildlife Biology 2001, 7(2):105-115.
  • [40]Prugh LR, Ritland CE, Arthur SM, Krebs CJ: Monitoring coyote population dynamics by genotyping faeces. Molecular Ecology 2005, 14(5):1585-1596.
  • [41]Schwartz MK, Luikart G, Waples RS: Genetic monitoring as a promising tool for conservation and management. Trends in Ecology & Evolution 2007, 22(1):25-33.
  • [42]Woods JG, Paetkau D, Lewis D, McLellan BN, Proctor M, Strobeck C: Genetic tagging of free-ranging black and brown bears. Wildlife Society Bulletin 1999, 27(3):616-627.
  • [43]Christie MR: Parentage in natural populations: novel methods to detect parent-offspring pairs in large data sets. Molecular Ecology Resources 2010, 10(1):115-128.
  • [44]McLean JE, Seamons TR, Dauer MB, Bentzen P, Quinn TP: Variation in reproductive success and effective number of breeders in a hatchery population of steelhead trout (Oncorhynchus mykiss): examination by microsatellite-based parentage analysis. Conservation Genetics 2008, 9(2):295-304.
  • [45]Vandeputte M, Mauger S, Dupont-Nivet M: An evaluation of allowing for mismatches as a way to manage genotyping errors in parentage assignment by exclusion. Molecular Ecology Notes 2006, 6(1):265-267.
  • [46]Herbinger C, Doyle CT, Taggart CT, Lochmann SE, Brooker AL, Wright JM, Cook D: Family relationships and effective population size in a natural cohort of Atlantic cod (Gadus morhua) larvae. Canadian Journal of Fisheries and Aquatic Sciences 1997, 54(Suppl 1):11-18.
  • [47]Prodohl PA, Loughry WJ, McDonough CM, Nelson WS, Thompson EA, Avise JC: Genetic maternity and paternity in a local population of armadillos assessed by microsatellite DNA markers and field data. American Naturalist 1998, 151(1):7-19.
  • [48]Okland JM, Haaland OA, Skaug HJ: A method for defining management units based on genetically determined close relatives. Ices Journal of Marine Science 2010, 67(3):551-558.
  • [49]Skaug HJ: Allele-sharing methods for estimation of population size. Biometrics 2001, 57(3):750-756.
  • [50]Skaug HJ, Berube M, Palsboll P: Detecting dyads of related individuals in large collections of DNA-profiles by controlling the false discovery rate. Molecular Ecology Resources 2010, 10:693-700.
  文献评价指标  
  下载次数:19次 浏览次数:52次