期刊论文详细信息
BMC Genomics
The compact mitochondrial genome of Zorotypus medoensis provides insights into phylogenetic position of Zoraptera
Chunxiang Liu3  Le Kang2  Chao Wu1  Yeying Wang1  Chuan Ma2 
[1] State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China;Laboratory of Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
关键词: Substitution rate;    tRNA truncation;    Gene length reduction;    Long-branch attraction;    Embioptera;    Polyneoptera;   
Others  :  1122583
DOI  :  10.1186/1471-2164-15-1156
 received in 2014-05-16, accepted in 2014-12-12,  发布年份 2014
PDF
【 摘 要 】

Background

Zoraptera, generally regarded as a member of Polyneoptera, represents one of the most enigmatic insect orders. Although phylogenetic analyses based on a wide array of morphological and/or nuclear data have been performed, the position of Zoraptera is still under debate. Mitochondrial genome (mitogenome) information is commonly considered to be preferable to reconstruct phylogenetic relationships, but no efforts have been made to incorporate it in Zorapteran phylogeny. To characterize Zoraptera mitogenome features and provide insights into its phylogenetic placement, here we sequenced, for the first time, one complete mitogenome of Zoraptera and reconstructed the phylogeny of Polyneoptera.

Results

The mitogenome of Zorotypus medoensis with an A + T content of 72.50% is composed of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and a noncoding A + T-rich region. The gene content and arrangement are identical to those considered ancestral for insects. This mitogenome shows a number of very unusual features. First, it is very compact, comprising 14,572 bp, and is the smallest among all known polyneopteran mitogenomes. Second, both noncoding sequences and coding genes exhibit a significant decrease in size compared with those of other polyneopterans. Third, Z. medoensis mitogenome has experienced an accelerated substitution rate. Fourth, truncated secondary structures of tRNA genes occur with loss of dihydrouridine (DHU) arm in trnC, trnR, and trnS(AGN) and loss of TΨC arm in trnH and trnT. The phylogenetic analyses based on the mitogenome sequence information indicate that Zoraptera, represented by Z. medoensis, is recovered as sister to Embioptera. However, both Zoraptera and Embioptera exhibit very long branches in phylogenetic trees.

Conclusions

Characterization of Z. medoensis mitogenome contributes to our understanding of the enigmatic Zoraptera. Mitogenome data demonstrate an overall strong resolution of deep-level phylogenies of Polyneoptera but not Insecta. It is preferable to expand taxon sampling of Zoraptera and other poorly represented orders in future to break up long branches.

【 授权许可】

   
2014 Ma et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150214022858402.pdf 618KB PDF download
Figure 4. 90KB Image download
Figure 3. 101KB Image download
Figure 2. 61KB Image download
Figure 1. 51KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Grimaldi D, Engel MS: Evolution of the Insects. Cambridge: Cambridge University Press; 2005.
  • [2]Mashimo Y, Yoshizawa K, Engel MS, Ghani IA, Dallai R, Beutel RG, Machida R: Zorotypus in Peninsular Malaysia (Zoraptera: Zorotypidae), with the description of three new species. Zootaxa 2013, 3717(4):498-514.
  • [3]Silvestri F: Descrizione di un nuovo ordine di insetti. Bollettino del Laboratorio di Zoologia Generale e Agraria della Facoltà Agraria in Portici 1913, 7:193-209.
  • [4]Hwang F-S: Zorotypus sinensis, a new species from China. Acta Entomol Sinica 1974, 17:423-427.
  • [5]Hwang F-S: A new species of Zoraptera. Acta Entomol Sinica 1976, 19:225-227.
  • [6]Engel MS, Grimaldi DA: The first mesozoic zoraptera (Insecta). Am Mus Novit 2002, 3362:1-20.
  • [7]Mashimo Y, Beutel RG, Dallai R, Lee CY, Machida R: Embryonic development of zoraptera with special reference to external morphology, and its phylogenetic implications (Insecta). J Morphol 2013, 275(3):295-312.
  • [8]Mashimo Y, Machida R, Dallai R, Gottardo M, Mercati D, Beutel RG: Egg structure of Zorotypus caudelli Karny (Insecta, Zoraptera, Zorotypidae). Tissue Cell 2011, 43(4):230-237.
  • [9]Dallai R, Mercati D, Gottardo M, Machida R, Mashimo Y, Beutel RG: The male reproductive system of Zorotypus caudelli Karny (Zoraptera): Sperm structure and spermiogenesis. Arthropod Struct Dev 2011, 40(6):531-547.
  • [10]Dallai R, Gottardo M, Mercati D, Machida R, Mashimo Y, Matsumura Y, Beutel RG: Divergent mating patterns and a unique mode of external sperm transfer in Zoraptera: an enigmatic group of pterygote insects. Naturwissenschaften 2013, 100(6):581-594.
  • [11]Davis RB, Baldauf SL, Mayhew PJ: Many hexapod groups originated earlier and withstood extinction events better than previously realized: inferences from supertrees. Proc R Soc B-Biol Sci 2010, 277(1687):1597-1606.
  • [12]Trautwein MD, Wiegmann BM, Beutel R, Kjer KM, Yeates DK: Advances in insect phylogeny at the dawn of the postgenomic era. Annu Rev Entomol 2012, 57:449-468.
  • [13]Xie Q, Tian XX, Qin Y, Bu WJ: Phylogenetic comparison of local length plasticity of the small subunit of nuclear rDNAs among all Hexapoda orders and the impact of hyper-length-variation on alignment. Mol Phylogenet Evol 2009, 50(2):310-316.
  • [14]Terry MD, Whiting MF: Mantophasmatodea and phylogeny of the lower neopterous insects. Cladistics 2005, 21(3):240-257.
  • [15]Jarvis KJ, Haas F, Whiting MF: Phylogeny of earwigs (Insecta: Dermaptera) based on molecular and morphological evidence: reconsidering the classification of Dermaptera. Syst Entomol 2005, 30(3):442-453.
  • [16]Carpenter JM, Wheeler WC: Numerical cladistics, simultaneous analysis and hexapod phylogeny. Evolución y Filogenia de Arthropoda Sociedad Entomológica, Aragonesa 1999, 26:333-346.
  • [17]Yoshizawa K: The Zoraptera problem: evidence for Zoraptera plus Embiodea from the wing base. Syst Entomol 2007, 32(2):197-204.
  • [18]Yoshizawa K: Monophyletic Polyneoptera recovered by wing base structure. Syst Entomol 2011, 36(3):377-394.
  • [19]Grimaldi D: Insect evolutionary history from Handlirsch to Hennig, and beyond. J Paleontol 2001, 75(6):1152-1160.
  • [20]Engel MS, Grimaldi DA: A winged Zorotypus in Miocene amber from the Dominican Republic (Zoraptera: Zorotypidae), with discussion on relationships of and within the order. Acta Geológica Hispánica 2000, 35(1):149-164.
  • [21]Rafael JA, Engel MS: A new species of Zorotypus from Central Amazonia, Brazil (Zoraptera: Zorotypidae). Am Mus Novit 2006, 3528:1-11.
  • [22]Boudreaux HB: Arthropod Phylogeny: With Special Reference to Insects. New York: John Wiley & Sons; 1979.
  • [23]Yoshizawa K, Johnson KP: Aligned 18S for Zoraptera (Insecta): phylogenetic position and molecular evolution. Mol Phylogenet Evol 2005, 37(2):572-580.
  • [24]Ishiwata K, Sasaki G, Ogawa J, Miyata T, Su ZH: Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences. Mol Phylogenet Evol 2011, 58(2):169-180.
  • [25]Wang YH, Engel MS, Rafael JA, Dang K, Wu HY, Wang Y, Xie Q, Bu WJ: A unique box in 28S rRNA is shared by the enigmatic insect order Zoraptera and Dictyoptera. PLoS One 2013, 8(1):e53679.
  • [26]Wheeler WC, Whiting M, Wheeler QD, Carpenter JM: The phylogeny of the extant hexapod orders. Cladistics 2001, 17(2):113-169.
  • [27]Kukalova-Peck J, Peck SB: Zoraptera wing structures: evidence for new genera and relationship with the blattoid orders (Insecta: Blattoneoptera). Syst Entomol 1993, 18(4):333-350.
  • [28]Misof B, Niehuis O, Bischoff I, Rickert A, Erpenbeck D, Staniczek A: Towards an 18S phylogeny of hexapods: accounting for group-specific character covariance in optimized mixed nucleotide/doublet models. Zoology 2007, 110(5):409-429.
  • [29]Simon S, Narechania A, DeSalle R, Hadrys H: Insect phylogenomics: exploring the source of incongruence using new transcriptomic data. Genome Biol Evol 2012, 4(12):1295-1309.
  • [30]Letsch H, Simon S: Insect phylogenomics: new insights on the relationships of lower neopteran orders (Polyneoptera). Syst Entomol 2013, 38(4):783-793.
  • [31]Beutel RG, Weide D: Cephalic anatomy of Zorotypus hubbardi (Hexapoda: Zoraptera): new evidence for a relationship with Acercaria. Zoomorphology 2005, 124(3):121-136.
  • [32]Beutel RG, Gorb SN: A revised interpretation of the evolution of attachment structures in Hexapoda with special emphasis on mantophasmatodea. Arthropod Syst Phyl 2006, 64(1):3-25.
  • [33]Rasnitsyn AP: On the taxonomic position of the insect order Zorotypida = Zoraptera. Zool Anz 1998, 237(2–3):185-194.
  • [34]Beutel RG, Gorb SN: Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J Zool Syst Evol Res 2001, 39(4):177-207.
  • [35]Mashimo Y, Matsumura Y, Machida R, Dallai R, Gottardo M, Yoshizawa K, Friedrich F, Wipfler B, Beutel RG: 100 years Zoraptera—a phantom in insect evolution and the history of its investigation. Insect Syst Evol 2014, 45(4):371-393.
  • [36]Whitfield JB, Kjer KM: Ancient rapid radiations of insects: challenges for phylogenetic analysis. Annu Rev Entomol 2008, 53:449-472.
  • [37]Ma C, Yang P, Jiang F, Chapuis MP, Shali Y, Sword GA, Kang L: Mitochondrial genomes reveal the global phylogeography and dispersal routes of the migratory locust. Mol Ecol 2012, 21(17):4344-4358.
  • [38]Simon S, Hadrys H: A comparative analysis of complete mitochondrial genomes among Hexapoda. Mol Phylogenet Evol 2013, 69(2):393-403.
  • [39]Cameron SL: Insect mitochondrial genomics: implications for evolution and phylogeny. Annu Rev Entomol 2014, 59:95-117.
  • [40]Bernt M, Donath A, Juhling F, Externbrink F, Florentz C, Fritzsch G, Putz J, Middendorf M, Stadler PF: MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 2013, 69(2):313-319.
  • [41]Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25(5):955-964.
  • [42]Zhang B, Ma C, Edwards O, Fuller S, Kang L: The mitochondrial genome of the Russian wheat aphid Diuraphis noxia: large repetitive sequences between trnE and trnF in aphids. Gene 2014, 533(1):253-260.
  • [43]Xia X, Xie Z: DAMBE: software package for data analysis in molecular biology and evolution. J Hered 2001, 92(4):371-373.
  • [44]Xia XH, Xie Z, Salemi M, Chen L, Wang Y: An index of substitution saturation and its application. Mol Phylogenet Evol 2003, 26(1):1-7.
  • [45]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
  • [46]Kumar S: Phyltest: A Program for Testing Phylogenetic Hypothesis, Version 2.0. 1996.
  • [47]Liu C, Chang J, Ma C, Li L, Zhou S: Mitochondrial genomes of two Sinochlora species (Orthoptera): novel genome rearrangements and recognition sequence of replication origin. BMC Genomics 2013, 14:114. BioMed Central Full Text
  • [48]Wan X, Kim MI, Kim MJ, Kim I: Complete mitochondrial genome of the free-living earwig, Challia fletcheri (Dermaptera: Pygidicranidae) and phylogeny of Polyneoptera. PLoS One 2012, 7(8):e42056.
  • [49]Minxiao W, Song S, Chaolun L, Xin S: Distinctive mitochondrial genome of Calanoid copepod Calanus sinicus with multiple large non-coding regions and reshuffled gene order: useful molecular markers for phylogenetic and population studies. BMC Genomics 2011, 12:73. BioMed Central Full Text
  • [50]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
  • [51]Suyama M, Torrents D, Bork P: PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 2006, 34(suppl 2):W609-W612.
  • [52]Castresana J: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000, 17(4):540-552.
  • [53]Lanfear R, Calcott B, Ho SY, Guindon S: PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 2012, 29(6):1695-1701.
  • [54]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19(12):1572-1574.
  • [55]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22(21):2688-2690.
  • [56]Lartillot N, Lepage T, Blanquart S: PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 2009, 25(17):2286-2288.
  • [57]Lartillot N, Brinkmann H, Philippe H: Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol Biol 2007, 7(Suppl 1):S4. BioMed Central Full Text
  • [58]Talavera G, Vila R: What is the phylogenetic signal limit from mitogenomes? the reconciliation between mitochondrial and nuclear data in the Insecta class phylogeny. BMC Evol Biol 2011, 11:315. BioMed Central Full Text
  • [59]Schmidt HA, Strimmer K, Vingron M, von Haeseler A: TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 2002, 18(3):502-504.
  • [60]Strimmer K, VonHaeseler A: Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci U S A 1997, 94(13):6815-6819.
  • [61]Shimodaira H, Hasegawa M: CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 2001, 17(12):1246-1247.
  • [62]Ma C, Liu C, Yang P, Kang L: The complete mitochondrial genomes of two band-winged grasshoppers, Gastrimargus marmoratus and Oedaleus asiaticus. BMC Genomics 2009, 10:156. BioMed Central Full Text
  • [63]Wilson K, Cahill V, Ballment E, Benzie J: The complete sequence of the mitochondrial genome of the crustacean Penaeus monodon: are malacostracan crustaceans more closely related to insects than to branchiopods? Mol Biol Evol 2000, 17(6):863-874.
  • [64]Negrisolo E, Babbucci M, Patarnello T: The mitochondrial genome of the ascalaphid owlfly Libelloides macaronius and comparative evolutionary mitochondriomics of neuropterid insects. BMC Genomics 2011, 12:221. BioMed Central Full Text
  • [65]Cao YQ, Ma C, Chen JY, Yang DR: The complete mitochondrial genomes of two ghost moths, Thitarodes renzhiensis and Thitarodes yunnanensis: the ancestral gene arrangement in Lepidoptera. BMC Genomics 2012, 13(1):276. BioMed Central Full Text
  • [66]Chen WJ, Bu Y, Carapelli A, Dallai R, Li S, Yin WY, Luan YX: The mitochondrial genome of Sinentomon erythranum (Arthropoda: Hexapoda: Protura): an example of highly divergent evolution. BMC Evol Biol 2011, 11:246. BioMed Central Full Text
  • [67]Thao ML, Baumann L, Baumann P: Organization of the mitochondrial genomes of whiteflies, aphids, and psyllids (Hemiptera, Sternorrhyncha). BMC Evol Biol 2004, 4:25. BioMed Central Full Text
  • [68]Beckenbach AT, Joy JB: Evolution of the mitochondrial genomes of gall midges (Diptera: Cecidomyiidae): rearrangement and severe truncation of tRNA genes. Genome Biol Evol 2009, 1:278-287.
  • [69]Cameron SL, Yoshizawa K, Mizukoshi A, Whiting MF, Johnson KP: Mitochondrial genome deletions and minicircles are common in lice (Insecta: Phthiraptera). BMC Genomics 2011, 12:394. BioMed Central Full Text
  • [70]Zhang DX, Hewitt GM: Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochem Syst Ecol 1997, 25(2):99-120.
  • [71]Schneider A, Ebert D: Covariation of mitochondrial genome size with gene lengths: evidence for gene length reduction during mitochondrial evolution. J Mol Evol 2004, 59(1):90-96.
  • [72]Hassanin A: Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Mol Phylogenet Evol 2006, 38(1):100-116.
  • [73]Li WH, Ellsworth DL, Krushkal J, Chang BH, Hewett-Emmett D: Rates of nucleotide substitution in primates and rodents and the generation time effect hypothesis. Mol Phylogenet Evol 1996, 5(1):182-187.
  • [74]Rand DM: Thermal habit, metabolic rate and the evolution of mitochondrial DNA. Trends Ecol Evol 1994, 9(4):125-131.
  • [75]Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL: Effects of size and temperature on metabolic rate. Science 2001, 293(5538):2248-2251.
  • [76]Gillooly JF: Effect of body size and temperature on generation time in zooplankton. J Plankton Res 2000, 22(2):241-251.
  • [77]Komoto N, Yukuhiro K, Tomita S: Novel gene rearrangements in the mitochondrial genome of a webspinner, Aposthonia japonica (Insecta: Embioptera). Genome 2012, 55(3):222-233.
  • [78]Thomas JA, Welch JJ, Woolfit M, Bromham L: There is no universal molecular clock for invertebrates, but rate variation does not scale with body size. Proc Natl Acad Sci U S A 2006, 103(19):7366-7371.
  • [79]Nesnidal MP, Helmkampf M, Bruchhaus I, Hausdorf B: Compositional heterogeneity and phylogenomic inference of metazoan relationships. Mol Biol Evol 2010, 27(9):2095-2104.
  • [80]Cameron SL, Lo N, Bourguignon T, Svenson GJ, Evans TA: A mitochondrial genome phylogeny of termites (Blattodea: Termitoidae): robust support for interfamilial relationships and molecular synapomorphies define major clades. Mol Phylogenet Evol 2012, 65(1):163-173.
  • [81]Bergsten J: A review of long-branch attraction. Cladistics 2005, 21(2):163-193.
  • [82]Minet J, Bourgoin T: Phylogenie et classification des Hexapodes (Arthropoda). Cahiers Liaison OPIE 1986, 20(4):23-28.
  • [83]Kjer KM: Aligned 18S and insect phylogeny. Syst Biol 2004, 53(3):506-514.
  • [84]Letsch HO, Meusemann K, Wipfler B, Schutte K, Beutel R, Misof B: Insect phylogenomics: results, problems and the impact of matrix composition. Proc R Soc B-Biol Sci 2012, 279(1741):3282-3290.
  文献评价指标  
  下载次数:30次 浏览次数:2次