期刊论文详细信息
BMC Evolutionary Biology
Genetic variation in taste receptor pseudogenes provides evidence for a dynamic role in human evolution
Dennis Drayna4  Donata Luiselli1  Gabriella Morini2  Sergio Tofanelli3  Davide Risso1 
[1] Department of BiGeA, Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, via Selmi 3, Bologna, 40126, Italy;University of Gastronomic Sciences, Piazza Vittorio Emanuele 9, Bra, Pollenzo 12042, CN, Italy;Department of Biology, University of Pisa, Via Ghini 13, Pisa, 56126, Italy;National Institute on Deafness and Other Communication Disorders, NIH, Bethesda 20892, MD, USA
关键词: TAS2Rs;    Pseudogenization;    Genetic polymorphisms;    Evolution;    Bitter taste;   
Others  :  1117955
DOI  :  10.1186/s12862-014-0198-8
 received in 2014-05-20, accepted in 2014-09-01,  发布年份 2014
PDF
【 摘 要 】

Background

Human bitter taste receptors are encoded by a gene family consisting of 25 functional TAS2R loci. In addition, humans carry 11 TAS2R pseudogenes, some of which display evidence for substantial diversification among species, showing lineage-specific loss of function. Since bitter taste is thought to help prevent the intake of toxic substances, diversity at TAS2R genes could reflect the action of natural selection on the ability to recognize some bitter compounds rather than others. Whether species-specific variation in TAS2R pseudogenes is solely the result of genetic drift or whether it may have been influenced by selection due to different feeding behaviors has been an open question.

Results

In this study, we analyzed patterns of variation at human TAS2R pseudogenes in both African and non-African populations, and compared them to those observable in nonhuman primates and archaic human species. Our results showed a similar worldwide distribution of allelic variation for most of the pseudogenes, with the exception of the TAS2R6P and TAS2R18P loci, both of which presented an unexpected higher frequency of derived alleles outside Africa. At the TAS2R6P locus, two SNPs were found in strong linkage disequilibrium (r2 > 0.9) with variants in the functional TAS2R5 gene, which showed signatures of selection. The human TAS2R18P carried a species-specific stop-codon upstream of four polymorphic insertions in the reading frame. SNPs at this locus showed significant positive values in a number of neutrality statistics, and age estimates indicated that they arose after the homo-chimp divergence.

Conclusions

The similar distribution of variation of many human bitter receptor pseudogenes among human populations suggests that they arose from the ancestral forms by a unidirectional loss of function. However we explain the higher frequency of TAS2R6P derived alleles outside Africa as the effect of the balancing selection acting on the closely linked TAS2R5 gene. In contrast, TAS2R18P displayed a more complex history, suggesting an acquired function followed by a recent pseudogenization that predated the divergence of human modern and archaic species, which we hypothesize was associated with adaptions to dietary changes.

【 授权许可】

   
2014 Risso et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150206013824593.pdf 1025KB PDF download
Figure 5. 13KB Image download
Figure 4. 50KB Image download
Figure 3. 69KB Image download
Figure 2. 19KB Image download
Figure 4. 33KB Image download
【 图 表 】

Figure 4.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Garcia J, Hankins WG: The evolution of bitter and the acquisition of toxiphobia. Olfaction and Taste 1975, 5:39-45.
  • [2]Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJ: T2Rs function as bitter taste receptors. Cell 2000, 100(6):703-711.
  • [3]Imai H, Suzuki N, Ishimaru Y, Sakurai T, Yin L, Pan W, Abe K, Misaka T, Hirai H: Functional diversity of bitter taste receptor TAS2R16 in primates. Biol Lett 2012, 8(4):652-656.
  • [4]Glendinning JI: Is the bitter rejection response always adaptive? Physiol Behav 1994, 56(6):1217-1227.
  • [5]Shi P, Zhang J: Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Mol Biol Evol 2006, 23(2):292-300.
  • [6]Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS: A novel family of mammalian taste receptors. Cell 2000, 100(6):693-702.
  • [7]Go Y, Satta Y, Takenaka O, Takahata N: Lineage-specific loss of function of bitter taste receptor genes in humans and nonhuman primates. Genetics 2005, 170(1):313-326.
  • [8]Bufe B, Breslin PA, Kuhn C, Reed DR, Tharp CD, Slack JP, Kim UK, Drayna D, Meyerhof W: The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Curr Biol 2005, 15(4):322-327.
  • [9]Wooding S, Gunn H, Ramos P, Thalmann S, Xing C, Meyerhof W: Genetics and bitter taste responses to goitrin, a plant toxin found in vegetables. Chem Senses 2010, 35(8):685-692.
  • [10]Risso D, Morini G, Pagani L, Quagliariello A, Giuliani C, De Fanti S, Sazzini M, Luiselli D, Tofanelli S: Genetic signature of differential sensitivity to stevioside in the Italian population. Genes Nutr 2014, 9(3):401.
  • [11]Wooding S, Kim UK, Bamshad MJ, Larsen J, Jorde LB, Drayna D: Natural selection and molecular evolution in PTC, a bitter-taste receptor gene. Am J Hum Genet 2004, 74(4):637-646.
  • [12]Campbell MC, Ranciaro A, Froment A, Hirbo J, Omar S, Bodo JM, Nyambo T, Lema G, Zinshteyn D, Drayna D, Breslin PA, Tishkoff SA: Evolution of functionally diverse alleles associated with PTC bitter taste sensitivity in Africa. Mol Biol Evol 2012, 29(4):1141-1153.
  • [13]Campbell MC, Ranciaro A, Zinshteyn D, Rawlings-Goss R, Hirbo J, Thompson S, Woldemeskel D, Froment A, Rucker JB, Omar SA, Bodo JM, Nyambo T, Belay G, Drayna D, Breslin PA, Tishkoff SA: Origin and differential selection of allelic variation at TAS2R16 associated with salicin bitter taste sensitivity in Africa. Mol Biol Evol 2014, 31(2):288-302.
  • [14]Balakirev ES, Ayala FJ: Pseudogenes: are they “junk” or functional DNA? Annu Rev Genet 2003, 37:123-151.
  • [15]Zhang Z, Gerstein M: Large-scale analysis of pseudogenes in the human genome. Curr Opin Genet Dev 2004, 14(4):328-335.
  • [16]Bekpen C, Marques-Bonet T, Alkan C, Antonacci F, Leogrande MB, Ventura M, Kidd JM, Siswara P, Howard JC, Eichler EE: Death and resurrection of the human IRGM gene. PLoS Genet 2009, 5(3):e1000403.
  • [17]Korrodi-Gregório L, Abrantes J, Muller T, Melo-Ferreira J, Marcus K, da Cruz e Silva QA, Fardilha M, Esteves PJ: Not so pseudo: the evolutionary history of protein phosphatase 1 regulatory subunit 2 and related pseudogenes. BMC Evol Biol 2013, 13:242. BioMed Central Full Text
  • [18]Zhang Q: Using pseudogene database to identify lineage-specific genes and pseudogenes in humans and chimpanzees. J Hered 2014, 105(3):436-443.
  • [19]Olson MV: When less is more: gene loss as an engine of evolutionary change. Am J Hum Genet 1999, 64(1):18-23.
  • [20]Wang X, Grus WE, Zhang J: Gene losses during human origins. PLoS Biol 2006, 4(3):e52.
  • [21]Shi P, Zhang J, Yang H, Zhang YP: Adaptive diversification of bitter taste receptor genes in Mammalian evolution. Mol Biol Evol 2003, 20(5):805-814.
  • [22]Dong D, Jones G, Zhang S: Dynamic evolution of bitter taste receptor genes in vertebrates. BMC Evol Biol 2009, 9:12. BioMed Central Full Text
  • [23]Conte C, Ebeling M, Marcuz A, Nef P, Andres-Barquin PJ: Evolutionary relationships of the Tas2r receptor gene families in mouse and human. Physiol Genomics 2003, 14(1):73-82.
  • [24]Go Y: Proceedings of the SMBE Tri-National Young Investigators’ Workshop. Lineage-specific expansions and contractions of the bitter taste receptor gene repertoire in vertebrates. Mol Biol Evol 2005, 23(5):964-972.
  • [25]Wang X, Thomas SD, Zhang J: Relaxation of selective constraint and loss of function in the evolution of human bitter taste receptor genes. Hum Mol Genet 2004, 13(21):2671-2678.
  • [26]Fischer A, Gilad Y, Man O, Pääbo S: Evolution of bitter taste receptors in humans and apes. Mol Biol Evol 2005, 22(3):432-436.
  • [27]Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA: An integrated map of genetic variation from 1,092 human genomes. Nature 2012, 491(7422):56-65.
  • [28][http://browser.1000genomes.org/index.html] webcite 1000 Genomes Browser.. []
  • [29]Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, Kent WJ: The UCSC Table Browser data retrieval tool. Nucleic Acids Res 2004, 32:D493-D496.
  • [30][http://genome.ucsc.edu/cgi-bin/hgTables] webcite UCSC Table Browser.. []
  • [31]Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, García-Girón C, Gordon L, Hourlier T, Hunt S, Juettemann T, Kähäri AK, Keenan S, Komorowska M, Kulesha E, Longden I, Maurel T, McLaren WM, Muffato M, Nag R, Overduin B, Pignatelli M, Pritchard B, Pritchard E, et al: Ensembl 2013.Nucleic Acids Res41(D1):D48–D55.
  • [32][http://www.ensembl.org/index.html] webcite Ensembl Genome Browser.. []
  • [33]Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21(2):263-265.
  • [34]Bandelt HJ, Forster P, Röhl A: Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999, 16(1):37-48.
  • [35]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007, 81(3):559-575.
  • [36]Excoffier L, Lischer HE: Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 2010, 10(3):564-567.
  • [37]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
  • [38]Tamura K, Stecher G, Peterson D, Filipski A, Kumar S: MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013, 30(12):2725-2729.
  • [39]Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25(11):1451-1452.
  • [40]Li H: A new test for detecting recent positive selection that is free from the confounding impacts of demography. Mol Biol Evol 2011, 28(1):365-375.
  • [41]Bahlo M, Griffiths RC: Inference from gene trees in a subdivided population. Theor Popul Biol 2000, 57(2):79-95.
  • [42][http://www.stats.ox.ac.uk/~griff/software.html] webcite GENETREE software.. []
  • [43]Tajima F: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123(3):585-595.
  • [44]Fu YX, Li WH: Statistical tests of neutrality of mutations. Genetics 1993, 133(3):693-709.
  • [45]Schierup MH, Charlesworth D, Vekemans X: The effect of hitch-hiking on genes linked to a balanced polymorphism in a subdivided population. Genet Res 2000, 76(1):63-73.
  • [46]Navarro A, Barton NH: The effects of multilocus balancing selection on neutral variability. Genetics 2002, 161(2):849-863.
  • [47]Weir BS, Cardon LR, Anderson AD, Nielsen DM, Hill WG: Measures of human population structure show heterogeneity among genomic regions. Genome Res 2005, 15(11):1468-1476.
  • [48]Cheng F, Chen W, Richards E, Deng L, Zeng C: SNP@Evolution: a hierarchical database of positive selection on the human genome. BMC Evol Biol 2009, 9:221. BioMed Central Full Text
  • [49]Langergraber KE, Prüfer K, Rowney C, Boesch C, Crockford C, Fawcett K, Inoue E, Inoue-Muruyama M, Mitani JC, Muller MN, Robbins MM, Schubert G, Stoinski TS, Viola B, Watts D, Wittig RM, Wrangham RW, Zuberbühler K, Pääbo S, Vigilant L: Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc Natl Acad Sci U S A 2012, 109(39):15716-15721.
  文献评价指标  
  下载次数:16次 浏览次数:4次