期刊论文详细信息
BMC Genetics
Copy number polymorphisms near SLC2A9 are associated with serum uric acid concentrations
Wen Hong Linda Kao5  Josef Coresh5  Caroline S Fox112  Eric Boerwinkle8  Aravinda Chakravarti6  Stephen Cristiano9  Adrienne Tin5  Eitan Halper-Stromberg4  Katalin Susztak3  Ingo Ruczinski9  Anna Köttgen7  Qiong Yang1  Lynn Mireles5  Robert B Scharpf9 
[1] Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA;Laboratory for Metabolic and Population Health, National Heart Lung and Blood Institute, National Institutes of Health, Framingham, Massachusetts, USA;Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA;Computational Biosciences Program, University of Colorado, Denver, Aurora, Colorado, USA;Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA;Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA;Department of Medicine IV, University Hospital Freiburg, Freiburg im Breisgau, Germany;IMM Center for Human Genetics, University of Texas School of Public Health, Houston, Texas, USA;Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
关键词: Genomewide association study;    Hyperuricemia;    Copy number polymorphism;   
Others  :  1085726
DOI  :  10.1186/1471-2156-15-81
 received in 2014-03-31, accepted in 2014-06-30,  发布年份 2014
PDF
【 摘 要 】

Background

Hyperuricemia is associated with multiple diseases, including gout, cardiovascular disease, and renal disease. Serum urate is highly heritable, yet association studies of single nucleotide polymorphisms (SNPs) and serum uric acid explain a small fraction of the heritability. Whether copy number polymorphisms (CNPs) contribute to uric acid levels is unknown.

Results

We assessed copy number on a genome-wide scale among 8,411 individuals of European ancestry (EA) who participated in the Atherosclerosis Risk in Communities (ARIC) study. CNPs upstream of the urate transporter SLC2A9 on chromosome 4p16.1 are associated with uric acid (<a onClick=View MathML">, p=3.19×10-23). Effect sizes, expressed as the percentage change in uric acid per deleted copy, are most pronounced among women (3.974.935.87 [ 2.55097.5 denoting percentiles], p=4.57×10-23) and independent of previously reported SNPs in SLC2A9 as assessed by SNP and CNP regression models and the phasing SNP and CNP haplotypes (<a onClick=View MathML">). Our finding is replicated in the Framingham Heart Study (FHS), where the effect size estimated from 4,089 women is comparable to ARIC in direction and magnitude (1.414.707.88, p=5.46×10-03).

Conclusions

This is the first study to characterize CNPs in ARIC and the first genome-wide analysis of CNPs and uric acid. Our findings suggests a novel, non-coding regulatory mechanism for SLC2A9-mediated modulation of serum uric acid, and detail a bioinformatic approach for assessing the contribution of CNPs to heritable traits in large population-based studies where technical sources of variation are substantial.

【 授权许可】

   
2014 Scharpf et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113175907540.pdf 1058KB PDF download
Figure 5. 40KB Image download
Figure 4. 31KB Image download
Figure 3. 27KB Image download
Figure 2. 36KB Image download
Figure 1. 46KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Liese AD, Hense HW, Löwel H, Döring A, Tietze M, Keil U: Association of serum uric acid with all-cause and cardiovascular disease mortality and incident myocardial infarction in the MONICA Augsburg cohort. World Health Organization monitoring trends and determinants in cardiovascular diseases. Epidemiology 1999, 10(4):391-397.
  • [2]Feig DI, Kang D-H, Johnson RJ: Uric acid and cardiovascular risk. N Engl J Med 2008, 359(17):1811-1821. doi:10.1056/NEJMra0800885
  • [3]Rao DC, Laskarzewski PM, Morrison JA, Khoury P, Kelly K, Glueck CJ: The clinical lipid research clinic family study: familial determinants of plasma uric acid. Hum Genet 1982, 60(3):257-261.
  • [4]Rice T, Vogler GP, Perry TS, Laskarzewski PM, Province MA, Rao DC: Heterogeneity in the familial aggregation of fasting serum uric acid level in five North American populations: the lipid research clinics family study. Am J Med Genet 1990, 36(2):219-225. doi:10.1002/ajmg.1320360216
  • [5]Charles BA, Shriner D, Doumatey A, Chen G, Zhou J, Huang H, Herbert A, Gerry NP, Christman MF, Adeyemo A, Rotimi CN: A genome-wide association study of serum uric acid in African Americans. BMC Med Genomics 2011, 4:17. doi:10.1186/1755-8794-4-17
  • [6]Wallace C, Newhouse SJ, Braund P, Zhang F, Tobin M, Falchi M, Ahmadi K, Dobson RJ, Marécano ACB, Hajat C, Burton P, Deloukas P, Brown M, Connell JM, Dominiczak A, Lathrop GM, Webster J, Farrall M, Spector T, Samani NJ, Caulfield MJ, Munroe PB: Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet 2008, 82(1):139-149. doi:10.1016/j.ajhg.2007.11.001
  • [7]Dehghan A, Köttgen A, Yang Q, Hwang S-J, Kao WL, Rivadeneira F, Boerwinkle E, Levy D, Hofman A, Astor BC, Benjamin EJ, van Duijn CM, Witteman JC, Coresh J, Fox CS: Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 2008, 372(9654):1953-1961. doi:10.1016/S0140-6736(08)61343-4
  • [8]Karns R, Zhang G, Sun G, Rao Indugula S, Cheng H, Havas-Augustin D, Novokmet N, Rudan D, Durakovic Z, Missoni S, Chakraborty R, Rudan P, Deka R: Genome-wide association of serum uric acid concentration: replication of sequence variants in an island population of the Adriatic coast of Croatia. Ann Hum Genet 2012, 76(2):121-127. doi:10.1111/j.1469-1809.2011.00698.x
  • [9]Tin A, Woodward OM, Kao WHL, Liu C-T, Lu X, Nalls MA, Shriner D, Semmo M, Akylbekova EL, Wyatt SB, Hwang S-J, Yang Q, Zonderman AB, Adeyemo AA, Palmer C, Meng Y, Reilly M, Shlipak MG, Siscovick D, Evans MK, Rotimi CN, Flessner MF, Köttgen M: Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele. Hum Mol Genet 2011, 20(20):4056-4068.
  • [10]Kolz M, Johnson T, Sanna S, Teumer A, Vitart V, Perola M, Mangino M, Albrecht E, Wallace C, Farrall M, Johansson A, Nyholt DR, Aulchenko Y, Beckmann JS, Bergmann S, Bochud M, Brown M, Campbell H, Connell J, Dominiczak A, Homuth G, Lamina C, McCarthy MI, Meitinger T, Mooser V, Munroe P, Nauck M, Peden J, European Special Population Research Network (EUROSPAN), et al.: Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet 2009, 5(6):1000504. doi:10.1371/journal.pgen.1000504
  • [11]Peiffer DA, Le JM, Steemers FJ, Chang W, Jenniges T, Garcia F, Haden K, Li J, Shaw CA, Belmont J, Cheung SW, Shen RM, Barker DL, Gunderson KL: High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res 2006, 16(9):1136-1148. doi:10.1101/gr.5402306
  • [12]Colella S, Yau C, Taylor JM, Mirza G, Butler H, Clouston P, Bassett AS, Seller A, Holmes CC, Ragoussis J: QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Res 2007, 35(6):2013-2025. doi:10.1093/nar/gkm076
  • [13]Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SFA, Hakonarson H, Bucan M: PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 2007, 17(11):1665-1674. doi:10.1101/gr.6861907
  • [14]Scharpf RB, Parmigiani G, Pevsner J, Ruczinski I: Hidden Markov models for the assessment of chromosomal alterations using high-throughput SNP arrays. Ann Appl Stat 2008, 2(2):687-713.
  • [15]Korn JM, Kuruvilla FG, McCarroll SA, Wysoker A, Nemesh J, Cawley S, Hubbell E, Veitch J, Collins PJ, Darvishi K, Lee C, Nizzari MM, Gabriel SB, Purcell S, Daly MJ, Altshuler D: Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nat Genet 2008, 40(10):1253-1260. doi:10.1038/ng.237
  • [16]Greenman CD, Bignell G, Butler A, Edkins S, Hinton J, Beare D, Swamy S, Santarius T, Chen L, Widaa S, Futreal PA, Stratton MR: PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data. Biostatistics 2010, 11(1):164-175. doi:10.1093/biostatistics/kxp045
  • [17]Su S-Y, Asher JE, Jarvelin M-R, Froguel P, Blakemore AIF, Balding DJ, Coin LJM: Inferring combined CNV/SNP haplotypes from genotype data. Bioinformatics 2010, 26(11):1437-1445. doi:10.1093/bioinformatics/btq157
  • [18]Yau C, Mouradov D, Jorissen RN, Colella S, Mirza G, Steers G, Harris A, Ragoussis J, Sieber O, Holmes CC: A statistical approach for detecting genomic aberrations in heterogeneous tumor samples from single nucleotide polymorphism genotyping data. Genome Biol 2010, 11(9):92. doi:10.1186/gb-2010-11-9-r92
  • [19]Yau C, Papaspiliopoulos O, Roberts GO, Holmes C: Bayesian nonparametric hidden Markov models with application to the analysis of copy number variation in mammalian genomes. J R Stat Soc Series B Stat Methodol 2011, 73(1):37-57. doi:10.1111/j.1467-9868.2010.00756.x
  • [20]Marioni JC, Thorne NP, Valsesia A, Fitzgerald T, Redon R, Fiegler H, Andrews TD, Stranger BE, Lynch AG, Dermitzakis ET, Carter NP, Tavaré S, Hurles ME: Breaking the waves: improved detection of copy number variation from microarray-based comparative genomic hybridization. Genome Biol 2007, 8(10):228. doi:10.1186/gb-2007-8-10-r228
  • [21]Diskin SJ, Li M, Hou C, Yang S, Glessner J, Hakonarson H, Bucan M, Maris JM, Wang K: Adjustment of genomic waves in signal intensities from whole-genome SNP genotyping platforms. Nucleic Acids Res 2008, 36(19):126. doi:10.1093/nar/gkn556
  • [22]Barnes C, Plagnol V, Fitzgerald T, Redon R, Marchini J, Clayton D, Hurles ME: A robust statistical method for case-control association testing with copy number variation. Nat Genet 2008, 40(10):1245-1252. doi:10.1038/ng.206
  • [23]Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly K, Irizarry RA: Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet 2010, 11(10):733-739. doi:10.1038/nrg2825
  • [24]Scharpf RB, Ruczinski I, Carvalho B, Doan B, Chakravarti A, Irizarry RA: A multilevel model to address batch effects in copy number estimation using SNP arrays. Biostatistics 2011, 12(1):33-50. doi:10.1093/biostatistics/kxq043
  • [25]Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C: Detection of large-scale variation in the human genome. Nat Genet 2004, 36(9):949-951. doi:10.1038/ng1416
  • [26]McCarroll SA: Common deletion polymorphisms in the human genome. Nat Genet 2006, 38(1):86-92.
  • [27]Geman S, Geman D: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 1984, 6(6):721-741.
  • [28]Diebolt J, Robert CP: Estimation of finite mixture distributions through Bayesian sampling. J R Stat Soc Series B Methodol 1994, 56:363-375.
  • [29]Cardin N, Holmes C, WTCCC: Bayesian hierarchical mixture modeling to assign copy number from a targeted cnv array. Genet Epidemiol 2011, 35(6):536-548. doi:10.1002/gepi.20604
  • [30]McCarroll SA, Kuruvilla FG, Korn JM, Cawley S, Nemesh J, Wysoker A, Shapero MH, de Bakker PIW: Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet 2008, 40(10):1166-1174. doi:10.1038/ng.238
  • [31]Atkinson B, Therneau T: Kinship: mixed-effects cox models, sparse matrices, and modeling data from large pedigrees. 2013. R package version 1.1.0-23. [http://cran.uvigo.es/src/contrib/Archive/kinship/ webcite]
  • [32]Ko Y-A, Mohtat D, Suzuki M, Park ASD, Izquierdo MC, Han SY, Kang HM, Si H, Hostetter T, Pullman JM, Fazzari M, Verma A, Zheng D, Greally JM, Susztak K: Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development. Genome Biol 2013, 14(10):108. doi:10.1186/gb-2013-14-10-r108
  • [33]Döering A, Gieger C, Mehta D, Gohlke H, Prokisch H, Coassin S, Fischer G, Henke K, Klopp N, Kronenberg F, Paulweber B, Pfeufer A, Rosskopf D, Völzke H, Illig T, Meitinger T, Wichmann H. -E, Meisinger C: SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet 2008, 40(4):430-436. doi:10.1038/ng.107
  • [34]McArdle PF, Parsa A, Chang Y-PC, Weir MR, O’Connell JR, Mitchell BD, Shuldiner AR: Association of a common nonsynonymous variant in GLUT9 with serum uric acid levels in old order amish. Arthritis Rheum 2008, 58(9):2874-2881. doi:10.1002/art.23752
  • [35]Hu M, Tomlinson B: Gender-dependent associations of uric acid levels with a polymorphism in SLC2A9 in Han Chinese patients. Scand J Rheumatol 2012, 41(2):161-163. doi:10.3109/030097422011.637952
  • [36]Köttgen A, Albrecht E, Teumer A, Vitart V, Krumsiek J, Hundertmark C, Pistis G, Ruggiero D, O’Seaghdha CM, Haller T, Yang Q, Tanaka T, Johnson AD, Kutalik Z, Smith AV, Shi J, Struchalin M, Middelberg RPS, Brown MJ, Gaffo AL, Pirastu N, Li G, Hayward C, Zemunik T, Huffman J, Yengo L, Zhao JH, Demirkan A, Feitosa MF, Liu X, et al.: Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet 2013, 45(2):145-154. doi:10.1038/ng.2500
  • [37]ENCODE Project Consortium: An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489(7414):57-74. doi:10.1038/nature11247
  • [38]Li S, Sanna S, Maschio A, Busonero F, Usala G, Mulas A, Lai S, Dei M, Orrù M, Albai G, Bandinelli S, Schlessinger D, Lakatta E, Scuteri A, Najjar S. S, Guralnik J, Naitza S, Crisponi L, Cao A, Abecasis G, Ferrucci L, Uda M, Chen W. -M, Nagaraja R: The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet 2007, 3(11):194. doi:10.1371/journal.pgen.0030194
  • [39]Matsuo H, Chiba T, Nagamori S, Nakayama A, Domoto H, Phetdee K, Wiriyasermkul P, Kikuchi Y, Oda T, Nishiyama J, Nakamura T, Morimoto Y, Kamakura K, Sakurai Y, Nonoyama S, Kanai Y, Shinomiya N: Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet 2008, 83(6):744-751. doi:10.1016/j.ajhg.2008.11.001
  • [40]Doblado M, Moley KH: Facilitative glucose transporter 9, a unique hexose and urate transporter. Am J Physiol Endocrinol Metab 2009, 297(4):831-835. doi:10.1152/ajpendo.00296.2009
  • [41]Louis TA, Zeger SL: Effective communication of standard errors and confidence intervals. Biostatistics 2009, 10(1):1-2. doi:10.1093/biostatistics/kxn014
  • [42]ARIC investigators: The atherosclerosis risk in communities (aric) study: design and objectives. The ARIC investigators. Am J Epidemiol 1989, 129(4):687-702.
  • [43]Center ARiCC: Operations Manual No. 2: Cohort Component Procedures. Chapel Hill: University of North Caroline School of Public Health; 1987.
  • [44]Center ARiCC: Operations Manual No. 10: Clinical Chemistry Determinations. Chapel Hill: University of North Caroline School of Public Health; 1987.
  • [45]Iribarren C, Folsom AR, Eckfeldt JH, McGovern PG, Nieto FJ: Correlates of uric acid and its association with asymptomatic carotid atherosclerosis: the ARIC study. Atherosclerosis Risk in Communities. Ann Epidemiol 1996, 6(4):331-340.
  • [46]Eckfeldt JH, Chambless LE, Shen YL: Short-term, within-person variability in clinical chemistry test results. Experience from the atherosclerosis risk in communities study. Arch Pathol Lab Med 1994, 118(5):496-500.
  • [47]Halper-Stromberg E, Scharpf RB, ArrayTV: Wave Correction for Arrays. 2013. R package version 1.0.0. [http://www.bioconductor.org/packages/release/bioc/html/ArrayTV.html webcite]
  • [48]Benjamini Y, Speed TP: Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res 2012, 40(10):72. doi:10.1093/nar/gks001
  • [49]Scharpf RB, Beaty TH, Schwender H, Younkin SG, Scott AF, Ruczinski I: Fast detection of de novo copy number variants from SNP arrays for case-parent trios. BMC Bioinformatics 2012, 13(1):330. doi:10.1186/1471-2105-13-330
  • [50]Köttgen A, Glazer NL, Dehghan A, Hwang S-J, Katz R, Li M, Yang Q, Gudnason V, Launer LJ, Harris TB, Smith AV, Arking DE, Astor BC, Boerwinkle E, Ehret GB, Ruczinski I, Scharpf RB, Chen Y-DI, de Boer IH, Haritunians T, Lumley T, Sarnak M, Siscovick D, Benjamin EJ, Levy D, Upadhyay A, Aulchenko YS, Hofman A, Rivadeneira F, Uitterlinden AG, et al.: Multiple loci associated with indices of renal function and chronic kidney disease. Nat Genet 2009. doi:10.1038/ng.377
  • [51]Carvalho B, Bengtsson H, Speed TP, Irizarry RA: Exploration, normalization, and genotype calls of high-density oligonucleotide SNP array data. Biostatistics 2007, 8(2):485-499. doi:10.1093/biostatistics/kxl042
  • [52]Lin S, Carvalho B, Cutler D, Arking D, Chakravarti A, Irizarry R: Validation and extension of an empirical Bayes method for SNP calling on Affymetrix microarrays. Genome Biol 2008, 9(4):63. doi:10.1186/gb-2008-9-4-r63
  • [53]Bates D, Maechler M, Bolker B: Lme4: Linear mixed-effects models using S4 classes. 2012. R package version 0.999999-0. [http://CRAN.R-project.org/package=lme4 webcite]
  • [54]Scheet P, Stephens M: A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 2006, 78(4):629-644. doi:10.1086/502802
  • [55]Fujita PA, Rhead B, Zweig AS, Hinrichs AS, Karolchik D, Cline MS, Goldman M, Barber GP, Clawson H, Coelho A, Diekhans M, Dreszer TR, Giardine BM, Harte RA, Hillman-Jackson J, Hsu F, Kirkup V, Kuhn RM, Learned K, Li CH, Meyer LR, Pohl A, Raney BJ, Rosenbloom KR, Smith KE, Haussler D, Kent WJ: The UCSC genome browser database: update 2011. Nucleic Acids Res 2011, 39(Database issue):876-882. doi:10.1093/nar/gkq963
  • [56]R Development Core Team: R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2012. [http://www.R-project.org/ webcite]
  • [57]Sarkar D: Lattice: Multivariate Data Visualization With R. New York: Springer; 2008. ISBN 978-0-387-75968-5
  • [58]Wickham H: ggplot2: Elegant Graphics for Data Analysis. Use R!. 233 Spring Street, New York, NY 10013, USA: Springer; 2009.
  • [59]Yin T, Cook D, Lawrence M: ggbio: an R package for extending the grammar of graphics for genomic data. Genome Biol 2012, 13(8):77.
  • [60]Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R, Morgan MT, Carey VJ: Software for computing and annotating genomic ranges. PLoS Comput Biol 2013, 9(8):1003118. doi:10.1371/journal.pcbi.1003118
  文献评价指标  
  下载次数:7次 浏览次数:0次