期刊论文详细信息
BMC Evolutionary Biology
New Biogeographic insight into Bauhinia s.l. (Leguminosae): integration from fossil records and molecular analyses
Zhe-Kun Zhou2  Hong-Jie Ma1  Shi-Tao Zhang4  Yong-Jiang Huang2  Tao Su5  Frédéric MB Jacques5  Hong-Hu Meng3 
[1] Zhejiang Institute of Geological Survey, Hangzhou 311203, China;Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China;University of the Chinese Academy of Sciences, Beijing 100049, China;Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China;Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
关键词: Long distance dispersal;    Boreotropical flora;    Paleocene-Eocene thermal maximum;    Biogeography;    Evolution;    Pantropical intercontinental disjunction;    Bauhinia;   
Others  :  1118023
DOI  :  10.1186/s12862-014-0181-4
 received in 2014-03-31, accepted in 2014-08-04,  发布年份 2014
PDF
【 摘 要 】

Background

Given that most species that have ever existed on earth are extinct, it stands to reason that the evolutionary history can be better understood with fossil taxa. Bauhinia is a typical genus of pantropical intercontinental disjunction among the Asian, African, and American continents. Geographic distribution patterns are better recognized when fossil records and molecular sequences are combined in the analyses. Here, we describe a new macrofossil species of Bauhinia from the Upper Miocene Xiaolongtan Formation in Wenshan County, Southeast Yunnan, China, and elucidate the biogeographic significance through the analyses of molecules and fossils.

Results

Morphometric analysis demonstrates that the leaf shapes of B. acuminata, B. championii, B. chalcophylla, B. purpurea, and B. podopetala closely resemble the leaf shapes of the new finding fossil. Phylogenetic relationships among the Bauhinia species were reconstructed using maximum parsimony and Bayesian inference, which inferred that species in Bauhinia species are well-resolved into three main groups. Divergence times were estimated by the Bayesian Markov chain Monte Carlo (MCMC) method under a relaxed clock, and inferred that the stem diversification time of Bauhinia was ca. 62.7 Ma. The Asian lineage first diverged at ca. 59.8 Ma, followed by divergence of the Africa lineage starting during the late Eocene, whereas that of the neotropical lineage starting during the middle Miocene.

Conclusions

Hypotheses relying on vicariance or continental history to explain pantropical disjunct distributions are dismissed because they require mostly Palaeogene and older tectonic events. We suggest that Bauhinia originated in the middle Paleocene in Laurasia, probably in Asia, implying a possible Tethys Seaway origin or an “Out of Tropical Asia”, and dispersal of legumes. Its present pantropical disjunction resulted from disruption of the boreotropical flora by climatic cooling after the Paleocene-Eocene Thermal Maximum (PETM). North Atlantic land bridges (NALB) seem the most plausible route for migration of Bauhinia from Asia to America; and additional aspects of the Bauhinia species distribution are explained by migration and long distance dispersal (LDD) from Eurasia to the African and American continents.

【 授权许可】

   
2014 Meng et al.; licensee BioMed Central Ltd

【 预 览 】
附件列表
Files Size Format View
20150206020029181.pdf 3363KB PDF download
Figure 8. 80KB Image download
Figure 7. 83KB Image download
Figure 6. 137KB Image download
Figure 5. 49KB Image download
Figure 4. 307KB Image download
Figure 3. 61KB Image download
Figure 2. 148KB Image download
Figure 1. 79KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Bartish I-V, Antonelli A, Richardson J-E, Swenson U: Vicariance or long-distance dispersal: historical biogeography of the pantropical subfamily Chrysophylloideae (Sapotaceae). J Biogeogr 2011, 38:177-190.
  • [2]Givnish T-J, Renner S-S: Tropical intercontinental disjunctions: Gondwana breakup, immigration from the boreotropics, and transoceanic dispersal. Int J Plant Sci 2004, 165(Supp. 4):1-6.
  • [3]Renner S-S, Clausing G, Meyer K: Historical biogeography of Melastomataceae: the roles of Tertiary migration and long-distance dispersal. Am J Bot 2001, 88:1290-1300.
  • [4]Milne R-I: Northern Hemisphere plant disjunctions: a window on tertiary land bridges and climate change? Ann Bot 2006, 98:465-472.
  • [5]Nie Z-L, Sun H, Manchester S-R, Meng Y, Luke Q, Wen J: Evolution of the intercontinental disjunctions in six continents in the Ampelopsis clade of the grape family (Vitaceae). BMC Evol Biol 2012, 12:17. BioMed Central Full Text
  • [6]Tiffney B-H: Perspectives on the origin of the floristic similarity between eastern Asia and eastern North America. J Arnold Arbor 1985, 66:73-94.
  • [7]Wolfe J-A: Some aspects of plant geography of the Northern Hemisphere during the Late Cretaceous and Tertiary. Ann Mo Bot Gard 1975, 62:264-279.
  • [8]Davis C-C, Bell C-D, Mathews S, Donoghue M-J: Laurasian migration explains Gondwanan disjunctions: evidence from Malpighiaceae. Proc Natl Acad Sci U S A 2002, 99:6833-6837.
  • [9]Wen J: Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Annu Rev Ecol Syst 1999, 30:421-455.
  • [10]Donoghue M-J, Bell C-D, Li J-H: Phylogenetic patterns in Northern Hemisphere plant geography. Int J Plant Sci 2001, 162(Supp. 6):41-52.
  • [11]Renner S-S: Plant dispersal across the tropical Atlantic by wind and sea currents. Int J Plant Sci 2004, 165:23-33.
  • [12]Doyle J-A, Sauquet H, Scharaschkin T, Le Thomas A: Phylogeny, molecular and fossil dating, and biogeographic history of Annonaceae and Myristicaceae (Magnoliales). Int J Plant Sci 2004, 165(Supp. 4):55-67.
  • [13]Erkens RH-J, Maas J-W, Couvreur TL-P: From Africa via Europe to South America: migrational route of a species-rich genus of Neotropical lowland rain forest trees (Guatteria, Annonaceae). J Biogeogr 2009, 36:2338-2352.
  • [14]Weeks A, Daly D-C, Simpson B-B: The phylogenetic history and biogeography of the frankincense and myrrh family (Burseraceae) based on nuclear and chloroplast sequence data. Mol Phylogenet Evol 2005, 35:85-101.
  • [15]Razafimandimbison S-G, McDowell T-D, Halford D-A, Bremer B: Origin of the pantropical and nutriceutical Morinda citrifolia L. (Rubiaceae): comments on its distribution range and circumscription. J Biogeogr 2010, 37:520-529.
  • [16]Clayton J-W, Soltis P-S, Soltis D-E: Recent long-distance dispersal overshadows ancient biogeographical patterns in a pantropical angiosperm family (Simaroubaceae, Sapindales). Syst Biol 2009, 58:395-410.
  • [17]Azuma H, García-Franco J-G, Rico-Gray V, Thien L-B: Molecular phylogeny of the Magnoliaceae: the biogeography of tropical and temperate disjunctions. Am J Bot 2001, 88:2275-2285.
  • [18]Fritsch P-W: Phylogeny and biogeography of the flowering plant genus Styrax (Styracaceae) based on chloroplast DNA restriction sites and DNA sequences of the internal transcribed spacer region. Mol Phylogenet Evol 2001, 19:387-408.
  • [19]Van der Hammen T, Cleef A: Trigonobalanus and the tropical amphi-pacific element in the North Andean forest. J Biogeogr 1983, 10:437-440.
  • [20]Wang Y, Fritsch P-W, Shi S, Almeda F, Cruz B-C, Kelly L-M: Phylogeny and infrageneric classification of Symplocos (Symplocaceae) inferred from DNA sequence data. Am J Bot 2004, 91:1901-1914.
  • [21]Queiroz A: The resurrection of oceanic dispersal in historical biogeography. Trends Ecol Evol 2005, 20:68-73.
  • [22]Milne R-I, Abbott R-J: The origin and evolution of Tertiary relict floras. Adv Bot Res 2002, 38:281-314.
  • [23]Magallón S, Sanderson M-J: Absolute diversification rates in angiosperm clades. Evolution 2001, 55:1762-1780.
  • [24]Wunderlin R, Larsen K, Larsen S-S: Reorganization of the Cercideae (Fabaceae: Caesalpinioideae). Biol Skrifter 1987, 28:1-40.
  • [25]Sinou C, Forest F, Lewis G-P, Bruneau A: The genus Bauhinia s.l. (Leguminosae): a phylogeny based on the plastid trnL-trnF region. Botany 2009, 87:947-960.
  • [26]Bruneau A, Forest F, Herendeen P-S, Klitgaard B-B, Lewis G-P: Phylogenetic relationships in the Caesalpinioideae (Leguminosae) as inferred from chloroplast trnL intron sequences. Syst Bot 2001, 26:487-514.
  • [27]Kajita T, Ohashi H, Tateishi Y, Bailey C-D, Doyle J-J: rbcL and legume phylogeny, with particular reference to Phaseoleae, Millettieae, and allies. Syst Bot 2001, 26:515-536.
  • [28]Käss E, Wink M: Molecular evolution of the leguminosae: Phylogeny of the three subfamilies based on rbcL sequences. Biochem Syst Ecol 1996, 24:365-378.
  • [29]Pennington R-T, Lavin M, Ireland H, Klitgaard B, Preston J, Hu JM: Phylogenetic relationships of basal papilionoid legumes based upon sequences of the chloroplast trnL intron. Syst Bot 2001, 26:537-556.
  • [30]Wunderlin R, Larsen K, Larsen S: Cercideae. In Advances In Legume Systematics, Part 1. Edited by Polhill RM, Raven PH. Royal Botanical Gardens, Kew, London; 1981:107-116.
  • [31]Zhang D-X: A cladistic analysis of Bauhinia L. (Leguminosae: cercideae). Chin J Bot 1995, 7:55-64.
  • [32]Hao G, Zhang D-X, Zhang M-Y, Guo L-X, Li S-J: Phylogenetics of Bauhinia subgenus Phanera (Leguminosae: Caesalpinioideae) based on ITS sequences of nuclear ribosomal DNA. Bot Bull Acad Sin 2003, 44:223-228.
  • [33]Bruneau A, Mercure M, Lewis G-P, Herendeen P-S: Phylogenetic patterns and diversification in the caesalpinioid legumes. Botany 2008, 86:697-718.
  • [34]Lavin M, Herendeen P-S, Wojciechowski M-F: Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Syst Biol 2005, 54:575-594.
  • [35]Zhang Y-Z: Lithostratigraphy in Yunnan Province. Wuhan: University of Geosciences Press; 1997.
  • [36]Wang W-M: A palynological survey of Neogene strata in Xiaolongtan basin, Yunnan Province of South China. Acta Bot Sin 1996, 38:743-748.
  • [37]Dong W: Upper Cenozoic stratigraphy and paleoenvironment of Xiaolongtan basin, Kaiyuan, Yunnan Province. Proceedings of the Eighth Annual Meetings of Chinese Society of Vertebrate Paleontology 2001.
  • [38]Zhou Z-K: The Miocene Xiaolongtan fossil flora in Kaiyuan, Yunnan, China. MSc. Thesis. Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences; 1985.
  • [39]Zhou Z-K: Miocene flora of Yunnan Province. In The Evolution of the Late Cretaceous-Cenozoic Floras in China. Edited by Tao JR. Science Press, Beijing; 2000:64-72.
  • [40]Bell W-A: Flora of the Upper Cretaceous Nanaimo Group of Vancouver Island. British Columbia: E. Cloutier; 1957.
  • [41]Bell W-A: Upper Cretaceous Floras of the Dunvegan, Bad Heart, and Milk River Formations of Western Canada. vol. 94th edition. Canada: Dept. of Mines and Technical Surveys; 1963.
  • [42]Berry E-W: Fossil plants from Bolivia and their bearing upon the age of uplift of the eastern Andes. Proc US Natl Mus 1917, 54:103-164.
  • [43]Berry E-W: The fossil flora of Potosi, Bolivia. Johns Hopkins Univ Stud Geol 1939, 13:6-68.
  • [44]Chen Y-F, Zhang D-X: Bauhinia larsenii, a fossil legume from Guangxi, China. Bot J Linn Soc 2005, 147:437-440.
  • [45]Eisenmann V: Equidae of the Albertine rift valley, Uganda. Geol Paleobiol Albertine Rift valley, Uganda-Zaire 1994, 2:289-307.
  • [46]Knowlton F-H: Fossil flora of the Yellowstone National Park. US Geol Surv Mon 1899, 32:651-791.
  • [47]Kowalski E-A: Middle to Late Miocene environments of Southern Ecuador: temperature, elevation, and fossil plants of the Nabón Basin. PhD thesis. University of Michigan; 2001.
  • [48]Van Neer W: The use of fish remains in African archaeozoology. CRA-CNRS Notes et Monographies Techniques 1983, 16:155-167.
  • [49]Wilf P: Late Paleocene-early Eocene climate changes in southwestern Wyoming: Paleobotanical analysis. Geol Soc Am Bull 2000, 112:292-307.
  • [50]Tao J-R, Zhou Z-K, Liu Y-S: The Evolution of the Late Cretaceous-Cenozoic floras in China. In ᅟ. Science press, Beijing; 2000.
  • [51]Wang Q, Song Z-Q, Chen Y-F, Shen S, Li Z-Y: Leaves and fruits of Bauhinia (Leguminosae, Caesalpinioideae, Cercideae) from the Oligocene Ningming Formation of Guangxi, South China and their biogeographic implications. BMC Evol Biol 2014, 14:88. BioMed Central Full Text
  • [52]Endo S, Fujiyama I: Some Late Mesozoic and Late Tertiary plants and a fossil insect from Thailand. In Contributions to the Geology And Palaeontology of Southeast Asia 31, Geology And Palaeontology of Southeast Asia. volume 2 edition. Edited by Kobayashi T, Toriyama R. University of Tokyo Press, Tokyo; 1966:191-197.
  • [53]Awasthi N: Indian Fossil Legumes. In Advances In Legume Systematics. Part 4 edition. Edited by Herendeen PS, Dilcher DL. The fossil records London, Royal Botanical Gardens, Kew; 1992:225-250.
  • [54]Unger F: Die fossile Flora von Kumi auf der Insel Euboea. Denkschr Akad Wiss, Wien 1867, 27:1-66.
  • [55]Chen D-Z, Zhang D-X, Larsen K, Larsen S-S: Bauhinia. In Flora of China. Edited by Wu Z-Y, Raven P-H. Missouri Botanical Garden Press, Science Press/St. Louis; 2010:6-21.
  • [56]Hou D, Larsen K, Larsen S-S: Caesalpiniaceae. Flora Malesiana 1996, 12:409-730.
  • [57]Jacques MB-F, Zhou Z-K: Geometric morphometrics: a powerful tool for the study of shape evolution in Menispermaceae endocarps. Taxon 2010, 59:881-895.
  • [58]Rohlf F: tpsDig: Digitize landmarks and outlines, version 2.10. State Univ. of New York at Stony Brook: Dept. of Ecology and Evolution; 2006.
  • [59]Bookstein F-L: Morphometric tools for landmark data: Geometry and biology. Cambridge: Cambridge University Press; 1997.
  • [60]Rohlf F: tpsRelw: Relative warps analysis, version 1.45. State Univ. of New York at Stony Brook: Dept. of Ecology and Evolution; 2007.
  • [61]Hammer Ø, Harper D, Ryan P: PAST: Paleontogical statistical software for education and data analysis. Palaeontol Elec 2001, 4:4.
  • [62]Thompson J-D, Gibson T-J, Plewniak F, Jeanmougin F, Higgins D-G: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 1997, 25:4876-4882.
  • [63]Swofford D: PAUP 4.0 b10: Phylogenetic analysis using parsimony. Sunderland, MA, USA: Sinauer Associates; 2002.
  • [64]Ronquist F, Huelsenbeck J-P: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [65]Posada D, Crandall K-A: Modeltest: testing the model of DNA substitution. Bioinformatics 1998, 14:817-818.
  • [66]Drummond A, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
  • [67]Rambaut A: FigTree, a graphical viewer of phylogenetic trees. 2007. http://treebioedacuk/software/figtree/.
  • [68]Van-Der P: The leaf of Bauhinia. Acta Bot Neerl 1951, 1:287-309.
  • [69]Lewis G: Legumes of the world. Kew: Royal Botanic Gardens; 2005:57–67.
  • [70]Zhang D-X: Leaf venation of Cercideae (Leguminosae). J Trop Subtrop Bot 1994, 2:45-57.
  • [71]Matthew W-D: Climate and evolution. Ann New York Acad Sci 1915, 24:171-318.
  • [72]Ernst C, Barbour R: Turtles of the world. Washington, DC: Smithsonian Institute Press; 1989.
  • [73]Seiffert E-R, Simons E-L, Attia Y: Fossil evidence for an ancient divergence of lorises and galagos. Nature 2003, 422:421-424.
  • [74]Luo Z-X, Ji Q, Wible J-R, Yuan C-X: An Early Cretaceous tribosphenic mammal and metatherian evolution. Science 2003, 302:1934-1940.
  • [75]Mayr G: Old world fossil record of modern-type hummingbirds. Science 2004, 304:861-864.
  • [76]Wu Z-Y, Zhou Z-K, Sun H, Li D-Z, Peng H: The areal-types of seed plants and the origin and differentiation. In ᅟ. Yunnan Science and Technology Press, Kunming; 2006.
  • [77]Wu Z-Y, Sun H, Zhou Z-K, Li D-Z, Peng H: Floristics of seed plants from China. Beijing: Science press; 2010.
  • [78]Gould S-J: Wonderful Life: The Burgess Shale and the nature of history. New York: Norton; 2000.
  • [79]Gould S-J: The Burgess Shale and the nature of history. London: Penguin; 1989.
  • [80]Schrire B-D, Lavin M, Barker N-P, Forest F: Phylogeny of the tribe Indigofereae (Leguminosae-Papilionoideae): Geographically structured more in succulent-rich and temperate settings than in grass-rich environment. Am J Bot 2009, 96:816-852.
  • [81]Chandler ME-J: A summary and survey of findings in the light of recent botanical observations. In The Lower Tertiary Floras of Southern England. vol. 4 edition. British Museum (Natural History), London, UK; 1964.
  • [82]Collinson M, Fowler K, Boulter M: Floristic changes indicate a cooling climate in the Eocene of southern England. Nature 1981, 291:315-317.
  • [83]Graham A: Late Cretaceous and Cenozoic history of North American vegetation, north of Mexico. In ᅟ. Oxford University Press, New York; 1999.
  • [84]Miller K-G, Fairbanks R-G, Mountain G-S: Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 1987, 2:1-19.
  • [85]Wolfe J-A: Relations of environmental change to angiosperm evolution during the late Cretaceous and Tertiary. In Evolution And Diversification Of Land Plants. Edited by Iwatsuki K, Raven PH. Springer, Tokyo; 1997:269-290.
  • [86]Wolfe J-A: A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere: Data from fossil plants make it possible to reconstruct Tertiary climatic changes, which may be correlated with changes in the inclination of the earth's rotational axis. Am Sci 1978, 66:694-703.
  • [87]Wolfe J-A: Neogene floristic and vegetational history of the Pacific Northwest. Madrono 1969, 20:83-110.
  • [88]Axelrod D-I: Evolution and biogeography of Madrean-Tethyan sclerophyll vegetation. Ann Mo Boto Gardo 1975, 62:280-334.
  • [89]Liston A, Rieseberg L-H, Elias T-S: Morphological stasis and molecular divergence in the intercontinental disjunct genus Datisca (Datiscaceae). Aliso 1989, 12:525-542.
  • [90]Berggren WA, Prothero DR: Eocene-Oligocene climatic and biotic evolution: An overview. In Eocene-Oligocene climatic and biotic evolution. Edited by Prothero DR, Berggren WA. Princeton University Press, Princeton, NJ; 1992:1-28.
  • [91]Tiffney B-H, Manchester S-R: The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere Tertiary. Int J Plant Sci 2001, 162(Supp. 6):3-17.
  • [92]Meulenkamp J-E, Sissingh W: Tertiary palaeogeography and tectonostratigraphic evolution of the Northern and Southern Peri-Tethys platforms and the intermediate domains of the African-Eurasian convergent plate boundary zone. Palaeogeogr Palaeoclimatol Palaeoecol 2003, 196:209-228.
  • [93]Tiffney B-H: The Eocene North Atlantic land bridge: Its importance in Tertiary and modern phytogeography of the Northern Hemisphere. J Arnold Arbor 1985, 66:243-273.
  • [94]Ricklefs R-E, Latham R-E, Schluter D: Global patterns of diversity in mangrove floras. In Species diversity in ecological communities: historical and geographical perspectives. Edited by Ricklefs RE, Schluter D. University of Chicago Press, Chicago; 1993:215-229.
  • [95]Hall R: Reconstructing cenozoic SE Asia. Geol Soc 1996, 106:153-184.
  • [96]Hall R: Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J Asian Earth Sci 2002, 20:353-431.
  • [97]Nathan R: Long-distance dispersal of plants. Science 2006, 313:786-788.
  • [98]Nathan R, Katul G-G, Horn H-S, Thomas S-M, Oren R, Avissar R, Pacala S-W, Levin S-A: Mechanisms of long-distance dispersal of seeds by wind. Nature 2002, 418:409-413.
  • [99]Wilkinson D-M: Plant colonization: are wind dispersed seeds really dispersed by birds at larger spatial and temporal scales? J Biogeogr 1997, 24:61-65.
  • [100]Higgins S-I, Lavorel S, Revilla E: Estimating plant migration rates under habitat loss and fragmentation. Oikos 2003, 101:354-366.
  • [101]Snow D-W: Tropical Frugivorous Birds and their foot plants: a world survey. Assoc Tropical Biol Conserv 1981, 13:1-14.
  • [102]Lavin M, Schrire B-P, Lewis G, Pennington R-T, Delgado-Salinas A, Thulin M, Hughes C-E, Matos A-B, Wojciechowski M-F: Metacommunity process rather than continental tectonic history better explains geographically structured phylogenies in legumes. Phil Trans R Soc Lond B 2004, 359:1509-1522.
  文献评价指标  
  下载次数:57次 浏览次数:29次