期刊论文详细信息
BMC Neuroscience
P-Rex2, a Rac-guanine nucleotide exchange factor, is expressed selectively in ribbon synaptic terminals of the mouse retina
Bradley A Blackburn1  David M Sherry2 
[1] Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
关键词: Actin;    Rac GTPase;    GEF;    Cytoskeleton;    Bipolar cell;    Photoreceptor;   
Others  :  1140216
DOI  :  10.1186/1471-2202-14-70
 received in 2012-12-08, accepted in 2013-07-10,  发布年份 2013
PDF
【 摘 要 】

Background

Phosphatidylinositol (3,4,5)-trisphosphate-dependent Rac Exchanger 2 (P-Rex2) is a guanine nucleotide exchange factor (GEF) that specifically activates Rac GTPases, important regulators of actin cytoskeleton remodeling. P-Rex2 is known to modulate cerebellar Purkinje cell architecture and function, but P-Rex2 expression and function elsewhere in the central nervous system is unclear. To better understand potential roles for P-Rex2 in neuronal cytoskeletal remodeling and function, we performed widefield and confocal microscopy of specimens double immunolabeled for P-Rex2 and cell- and synapse-specific markers in the mouse retina.

Results

P-Rex2 was restricted to the plexiform layers of the retina and colocalized extensively with Vesicular Glutamate Transporter 1 (VGluT1), a specific marker for photoreceptor and bipolar cell terminals. Double labeling for P-Rex2 and peanut agglutinin, a cone terminal marker, confirmed that P-Rex2 was present in both rod and cone terminals. Double labeling with markers for specific bipolar cell types showed that P-Rex2 was present in the terminals of rod bipolar cells and multiple ON- and OFF-cone bipolar cell types. In contrast, P-Rex2 was not expressed in the processes or conventional synapses of amacrine or horizontal cells.

Conclusions

P-Rex2 is associated specifically with the glutamatergic ribbon synaptic terminals of photoreceptors and bipolar cells that transmit visual signals vertically through the retina. The Rac-GEF function of P-Rex2 implies a specific role for P-Rex2 and Rac-GTPases in regulating the actin cytoskeleton in glutamatergic ribbon synaptic terminals of retinal photoreceptors and bipolar cells and appears to be ideally positioned to modulate the adaptive plasticity of these terminals.

【 授权许可】

   
2013 Sherry and Blackburn; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324152523780.pdf 5183KB PDF download
Figure 8. 130KB Image download
Figure 7. 150KB Image download
Figure 6. 77KB Image download
Figure 5. 172KB Image download
Figure 4. 100KB Image download
Figure 3. 195KB Image download
Figure 2. 77KB Image download
Figure 1. 164KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Luo L: Rho GTPases in neuronal morphogenesis. Nat Rev Neurosci 2000, 1:173-180.
  • [2]Govek EE, Newey SE, Van Aelst L: The role of the Rho GTPases in neuronal development. Genes Dev 2005, 19:1-49.
  • [3]De Curtis I: Functions of Rac GTPases during neuronal development. Dev Neurosci 2008, 30:47-58.
  • [4]Hajdo-Milasinovic A, Ellenbroek SI, Van Es S, van der Vaart B, Collard JG: Rac1 and Rac3 have opposing functions in cell adhesion and differentiation of neuronal cells. J Cell Sci 2007, 120:555-566.
  • [5]Van Leeuwen FN, Kain HE, Kammen RA, Michiels F, Kranenburg OW, Collard JG: The guanine nucleotide exchange factor Tiam1 affects neuronal morphology; opposing roles for the small GTPases Rac and Rho. J Cell Biol 1997, 139:797-807.
  • [6]Bateman J, Shu H, Van Vactor D: The guanine nucleotide exchange factor trio mediates axonal development in the Drosophila embryo. Neuron 2000, 26:93-106.
  • [7]Penzes P, Johnson RC, Kambampati V, Mains RE, Eipper BA: Distinct roles for the two Rho GDP/GTP exchange factor domains of kalirin in regulation of neurite growth and neuronal morphology. J Neurosci 2001, 21:8426-8433.
  • [8]Matsuo N, Hoshino M, Yoshizawa M, Nabeshima Y: Characterization of STEF, a guanine nucleotide exchange factor for Rac1, required for neurite growth. J Biol Chem 2002, 277:2860-2868.
  • [9]Tanaka M, Ohashi R, Nakamura R, Shinmura K, Kamo T, Sakai R, Sugimura H: Tiam1 mediates neurite outgrowth induced by ephrin-B1 and EphA2. EMBO J 2004, 23:1075-1088.
  • [10]Tudor EL, Perkinton MS, Schmidt A, Ackerley S, Brownlees J, Jacobsen NJ, Byers HL, Ward M, Hall A, Leigh PN, Shaw CE, McLaughlin DM, Miller CC: ALS2/ALSIN regulates RAC-PAK signalling and neurite outgrowth. J Biol Chem 2005, 280:34735-34740.
  • [11]Yoshizawa M, Kawauchi T, Sone M, Nishimura YV, Terao M, Chihama K, Nabeshima YJ, Hoshino M: Involvement of a Rac activator, P-Rex1, in neurotrophin-derived signaling and neuronal migration. J Neurosci 2005, 25:4406-4419.
  • [12]Donald S, Humby T, Fyfe I, Segonds-Pichon A, Walker SA, Andrews SR, Coadwell WJ, Emson P, Wilkinson LS, Welch HC: P-Rex2 regulates Purkinje cell dendrite morphology and motor coordination. Proc Natl Acad Sci USA 2008, 105:4483-4488.
  • [13]Waters JE, Astle MV, Ooms LM, Balamatsias D, Gurung R, Mitchell CA: P-Rex1 – a multidomain protein that regulates neurite differentiation. J Cell Sci 2008, 121:2892-2903.
  • [14]Cahill ME, Xie Z, Day M, Photowala H, Barbolina MV, Miller CA, Weiss C, Radulovic J, Sweatt JD, Disterhoft JF, Surmeier DJ, Penzes P: Kalirin regulates cortical spine morphogenesis and disease-related behavioral phenotypes. Proc Natl Acad Sci USA 2009, 106:13058-13063.
  • [15]Welch HC, Condliffe AM, Milne LJ, Ferguson GJ, Hill K, Webb LM, Okkenhaug K, Coadwell WJ, Andrews SR, Thelen M, Jones GE, Hawkins PT, Stephens LR: P-Rex1 regulates neutrophil function. Current Biol 2005, 15:1867-1873.
  • [16]Donald S, Hill K, Lecureuil C, Barnouin R, Krugmann S, John Coadwell W, Andrews SR, Walker SA, Hawkins PT, Stephens LR, Welch HC: P-Rex2, a new guanine-nucleotide exchange factor for Rac. FEBS Let 2004, 572:172-176.
  • [17]Rosenfeldt H, Vázquez-Prado J, Gutkind JS: P-REX2, a novel PI-3-kinase sensitive Rac exchange factor. FEBS Lett 2004, 572:167-171.
  • [18]Hill K, Krugmann S, Andrews SR, Coadwell WJ, Finan P, Welch HCE, Hawkins PT, Stephens LR: Regulation of P-Rex1 by phosphatidylinositol (3,4,5)-triphosphate and Gβγ Subunits. J Biol Chem 2005, 280:4166-4173.
  • [19]Barber MA, Donald S, Thelen S, Anderson KE, Thelen M, Welch HC: Membrane translocation of P-Rex1 is mediated by G protein βγ subunits and phosphoinositide 3-kinase. J Biol Chem 2007, 282:29967-29976.
  • [20]Jackson C, Welch HC, Bellamy TC: Control of cerebellar long-term potentiation by P-Rex-family guanine-nucleotide exchange factors and phosphoinositide 3-kinase. PLoS One 2010, 5:e11962.
  • [21]Haverkamp S, Wässle H: Immunocytochemical analysis of the mouse retina. J Comp Neurol 2000, 424:1-23.
  • [22]Chang YC, Gottlieb DI: Characterization of the proteins purified with monoclonal antibodies to glutamic acid decarboxylase. J Neurosci 1988, 8:2123-2130.
  • [23]Sherry DM, Mitchell R, Standifer KM, Du Plessis B: Distribution of plasma membrane-associated syntaxins 1 through 4 indicates distinct trafficking functions in the synaptic layers of the mouse retina. BMC Neurosci 2006, 7:54. BioMed Central Full Text
  • [24]Huber G, Matus A: Differences in the cellular distributions of two microtubule-associated proteins, MAP1 and MAP2, in rat brain. J Neurosci 1984, 4:151-160.
  • [25]Tucker RP, Matus AI: Microtubule-associated proteins characteristic of embryonic brain are found in the adult mammalian retina. Dev Biol 1988, 130:423-434.
  • [26]Blanks JC, Johnson LV: Selective lectin binding of the developing mouse retina. J Comp Neurol 1983, 221:31-41.
  • [27]Blanks JC, Johnson LV: Specific binding of peanut lectin to a class of retinal photoreceptor cells. A species comparison. Invest Ophthalmol Vis Sci 1984, 25:546-557.
  • [28]Wässle H, Puller C, Muller F, Haverkamp S: Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. J Neurosci 2009, 29:106-117.
  • [29]Negishi K, Kato S, Teranishi T: Dopamine cells and rod bipolar cells contain protein kinase C-like immunoreactivity in some vertebrate retinas. Neurosci Lett 1999, 94:247-252.
  • [30]Trevarrow B, Marks DL, Kimmel CB: Organization of hindbrain segments in the zebrafish embryo. Neuron 1990, 4:669-679.
  • [31]Fox MA, Sanes JR: Synaptotagmin I and II are present in distinct subsets of central synapses. J Comp Neurol 2007, 503:280-296.
  • [32]Barnstable CJ, Hofstein R, Akagawa K: A marker of early amacrine cell development in rat retina. Brain Res 1985, 352:286-290.
  • [33]Inoue A, Obata K, Akagawa K: Cloning and sequence analysis of cDNA for a neuronal cell membrane antigen HPC-1. J Biol Chem 1992, 267:10613-10619.
  • [34]Morgans CW, Brandstätter JH, Kellerman J, Betz H, Wässle H: A SNARE complex containing syntaxin 3 is present in ribbon synapses of the retina. J Neurosci 1996, 16:6713-6721.
  • [35]Johnson J, Tian N, Caywood MS, Reimer RJ, Edwards RH, Copenhagen DR: Vesicular neurotransmitter expression in developing postnatal rodent retina: GABA and glycine precede glutamate. J Neurosci 2003, 23:518-529.
  • [36]Sherry DM, Wang MM, Bates J, Frishman LJ: Expression of vesicular glutamate transporter 1 in the mouse retina reveals temporal ordering in development of rod vs. cone and ON vs. OFF circuits. J Comp Neurol 2003, 465:480-498.
  • [37]Sherry DM, Murray A, Hoffhines A, Kanan Y, Arbogast KL, Fleisler SJ, Burns ME, Moore KL, Al-Ubaidi MR: Lack of protein tyrosine sulfation disrupts photoreceptor outer segment morphogenesis, retinal function and retinal anatomy. Eur J Neurosci 2010, 32:1461-1472.
  • [38]Ghosh KK, Bujan S, Haverkamp S, Feigenspan A, Wässle H: Types of bipolar cells in the mouse retina. J Comp Neurol 2004, 469:70-82.
  • [39]Balasubramanian N, Slepak VZ: Light-mediated activation of Rac-1 in photoreceptor outer segments. Curr Biol 2003, 13:1306-1310.
  • [40]Belmonte MA, Santos MF, Kihara AH, Yan CYI, Hamassaki DE: Light-induced photoreceptor degeneration in the mouse involves activation of the small GTPase Rac1. Invest Ophthalmol Vis Sci 2006, 47:1193-1200.
  • [41]Haruta M, Bush RA, Kjellstrom S, Vijaysarathy C, Zeng Y, Le Y-Z, Sieving PA: Depleting Rac1 in mouse rod photoreceptors protects them from photo-oxidative stress without affecting their structure or function. Proc Nat Acad Sci USA 2009, 106:9397-9402.
  • [42]Chang HY, Ready DF: Rescue of photoreceptor degeneration in rhodopsin-null Drosophila mutants by activated Rac1. Science 2000, 290:1978-1980.
  • [43]Mitchell DC, Bryan BA, Liu JP, Liu WB, Zhang L, Qu J, Zhou X, Liu M, Li DW: Developmental expression of three small GTPases in the mouse eye. Molec Vis 2007, 13:1144-1153.
  • [44]Welch HC, Coadwell WJ, Ellson CD, Ferguson GJ, Andrews SR, Erdjument-Bromage H, Tempst P, Hawkins PT, Stephens LR: P-Rex1, a PtdIns(3,4,5)P3- and Gβγ-regulated guanine nucleotide exchange factor for Rac. Cell 2002, 108:809-821.
  • [45]Zhao T, Nalbant P, Hoshino M, Dong X, Wu D, Bokoch GM: Signaling requirements for translocation of P-Rex1, a key Rac2 exchange factor involved in chemoattractant stimulated human neutrophil function. J Leukocyte Biol 2007, 81:1127-1136.
  • [46]Brandon C, Lam DM: The ultrastructure of rat rod synaptic terminals: effects of dark-adaptation. J Comp Neurol 1983, 217:167-175.
  • [47]McCartney MD, Dickson DH: Morphometric analysis of circadian variations in the retinal photoreceptor synaptic terminals of the adult and fetal guinea pig. Am J Anat 1986, 176:1-17.
  • [48]Yazulla S, Studholme KM: Glycine-receptor immunoreactivity in retinal bipolar cells is postsynaptic to glycinergic and GABAergic amacrine cell synapses. J Comp Neurol 1991, 310:11-20.
  • [49]Yazulla S, Studholme KM: Light-dependent plasticity of the synaptic terminals of Mb bipolar cells in goldfish retina. J Comp Neurol 1992, 320:521-530.
  • [50]Schmitz Y, Kohler K: Spinule formation in the fish retina: is there an involvement of actin and tubulin? An electron microscopic immunogold study. J Neurocytol 1993, 22:205-214.
  • [51]Wagner HJ, Djamgoz MB: Spinules: a case for retinal synaptic plasticity. Trends Neurosci 1993, 16:201-206.
  • [52]Weiler R, Janssen-Bienhold U: Spinule-type neurite outgrowth from horizontal cells during light adaptation in the carp retina: an actin-dependent process. J Neurocytol 1993, 22:129-133.
  • [53]Behrens UD, Wagner HJ: Adaptation-dependent changes of bipolar cell terminals in fish retina: effects on overall morphology and spinule formation in Ma and Mb cells. Vision Res 1996, 36:3901-3911.
  • [54]Behrens UD, Kasten P, Wagner HJ: Adaptation-dependent plasticity of rod bipolar cell axon terminal morphology in the rat retina. Cell Tissue Res 1998, 294:243-251.
  • [55]Santos-Bredariol AS, Santos MF, Hamassaki-Britto DE: Distribution of the small molecular weight GTP-binding proteins Rac1, Cdc42, RhoA and RhoB in the developing chick retina. J Neurocytol 2002, 31:149-159.
  • [56]Adly MA, Spiwoks–Becker I, Vollrath L: Ultrastructural changes of photoreceptor synaptic ribbons in relation to time of day and illumination. Invest Ophthalmol Vis Sci 1999, 40:2165-2172.
  • [57]Spiwoks-Becker I, Glas M, Lasarzik I, Vollrath L: Mouse photoreceptor synaptic ribbons lose and regain material in response to illumination changes. Eur J Neurosci 2004, 19:1559-1571.
  • [58]Regus-Leidig H, Specht D, tom Dieck S, Brandstätter JH: Stability of active zone components at the photoreceptor ribbon complex. Molec Vis 2010, 16:2690-2700.
  • [59]Yazulla S, Studholme KM: Light adaptation affects synaptic vesicle density but not the distribution of GABAA receptors in goldfish photoreceptor terminals. Microsc Res Tech 1997, 36:43-56.
  • [60]Petrucci TC, Morrow JS: Synapsin I: and actin-bundling protein under phosphorylation control. J Cell Biol 1987, 105:1355-1363.
  • [61]Benfenati F, Valtorta F, Chieregatti E, Greengard P: Interaction of free and synaptic vesicle-bound synapsin I with F-actin. Neuron 1992, 8:377-386.
  • [62]Hilfiker S, Benfenati F, Doussau F, Nairn AC, Czernik AJ, Augustine GJ, Greengard P: Structural domains involved in the regulation of transmitter release by synapsins. J Neurosci 2005, 25:2658-2669.
  • [63]Mandell JW, Townes-Anderson E, Czernik AJ, Cameron R, Greengard P, De Camilli P: Synapsins in the vertebrate retina: absence from ribbon synapses and heterogeneous distribution among conventional synapses. Neuron 1990, 5:19-33.
  • [64]Schmitz F, Drenckhahn D: Li+-induced structural changes of synaptic ribbons are related to the phosphoinositide metabolism in photoreceptor synapses. Brain Res 1993, 604:142-148.
  • [65]Ivanovich I, Anderson RE, Le YZ, Fliesler SJ, Sherry DM, Rajala RVS: Deletion of the p85α regulatory subunit of phosphoinositide 3-kinase in cone photoreceptor cells results in cone photoreceptor degeneration. Invest Ophthalmol Vis Sci 2011, 52:3775-3783.
  文献评价指标  
  下载次数:19次 浏览次数:8次