期刊论文详细信息
BMC Neuroscience
Functional connectivity profile of the human inferior frontal junction: involvement in a cognitive control network
Bettina Pfleiderer1  Benedikt Sundermann1 
[1] Department of Clinical Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
关键词: Resting state;    Meta-analysis;    MACM;    Magnetic resonance imaging;    Prefrontal cortex;    Cognition;   
Others  :  1140930
DOI  :  10.1186/1471-2202-13-119
 received in 2012-07-12, accepted in 2012-09-26,  发布年份 2012
PDF
【 摘 要 】

Background

The human inferior frontal junction area (IFJ) is critically involved in three main component processes of cognitive control (working memory, task switching and inhibitory control). As it overlaps with several areas in established anatomical labeling schemes, it is considered to be underreported as a functionally distinct location in the neuroimaging literature. While recent studies explicitly focused on the IFJ's anatomical organization and functional role as a single brain area, it is usually not explicitly denominated in studies on cognitive networks. However based on few analyses in small datasets constrained by specific a priori assumptions on its functional specialization, the IFJ has been postulated to be part of a cognitive control network. Goal of this meta-analysis was to establish the IFJ’s connectivity profile on a high formal level of evidence by aggregating published implicit knowledge about its co-activations. We applied meta-analytical connectivity modeling (MACM) based on the activation likelihood estimation (ALE) method without specific assumptions regarding functional specialization on 180 (reporting left IFJ activity) and 131 (right IFJ) published functional neuroimaging experiments derived from the BrainMap database. This method is based on coordinates in stereotaxic space, not on anatomical descriptors.

Results

The IFJ is significantly co-activated with areas in the dorsolateral and ventrolateral prefrontal cortex, anterior insula, medial frontal gyrus / pre-SMA, posterior parietal cortex, occipitotemporal junction / cerebellum, thalamus and putamen as well as language and motor areas. Results are corroborated by an independent resting-state fMRI analysis.

Conclusions

These results support the assumption that the IFJ is part of a previously described cognitive control network. They also highlight the involvement of subcortical structures in this system. A direct line is drawn from works on the functional significance of brain activity located at the IFJ and its anatomical definition to published results related to distributed cognitive brain systems. The IFJ is therefore introduced as a convenient starting point to investigate the cognitive control network in further studies.

【 授权许可】

   
2012 Sundermann and Pfleiderer; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325154543309.pdf 2548KB PDF download
Figure 3. 96KB Image download
Figure 2. 59KB Image download
Figure 1. 19KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Brass M, Derrfuss J, Forstmann B, von Cramon DY: The role of the inferior frontal junction area in cognitive control. Trends Cogn Sci 2005, 9(7):314-316.
  • [2]Derrfuss J, Brass M, von Cramon DY, Lohmann G, Amunts K: Neural activations at the junction of the inferior frontal sulcus and the inferior precentral sulcus: interindividual variability, reliability, and association with sulcal morphology. Hum Brain Mapp 2009, 30(1):299-311.
  • [3]Derrfuss J, Brass M, Neumann J, von Cramon DY: Involvement of the inferior frontal junction in cognitive control: meta-analyses of switching and Stroop studies. Hum Brain Mapp 2005, 25(1):22-34.
  • [4]Derrfuss J, Brass M, von Cramon DY: Cognitive control in the posterior frontolateral cortex: evidence from common activations in task coordination, interference control, and working memory. Neuroimage 2004, 23(2):604-612.
  • [5]Schroeter ML, Vogt B, Frisch S, Becker G, Barthel H, Mueller K, Villringer A, Sabri O: Executive deficits are related to the inferior frontal junction in early dementia. Brain 2012, 135(1):201-215.
  • [6]Levy BJ, Wagner AD: Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating. Ann N Y Acad Sci 2011, 1224(1):40-62.
  • [7]Kim C, Cilles SE, Johnson NF, Gold BT: Domain general and domain preferential brain regions associated with different types of task switching: a meta-analysis. Hum Brain Mapp 2012, 33(1):130-142.
  • [8]Kim C, Johnson NF, Cilles SE, Gold BT: Common and distinct mechanisms of cognitive flexibility in prefrontal cortex. J Neurosci 2011, 31(13):4771-4779.
  • [9]Cole MW, Schneider W: The cognitive control network: Integrated cortical regions with dissociable functions. Neuroimage 2007, 37(1):343-360.
  • [10]Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF: Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci U S A 2009, 106(31):13040-13045.
  • [11]Niendam TA, Laird AR, Ray KL, Dean YM, Glahn DC, Carter CS: Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn Affect Behav Neurosci 2012, 12(2):241-268.
  • [12]Laird AR, Eickhoff SB, Kurth F, Fox PM, Uecker AM, Turner JA, Robinson JL, Lancaster JL, Fox PT: ALE Meta-Analysis Workflows Via the Brainmap Database: Progress Towards A Probabilistic Functional Brain Atlas. Front Neuroinformatics 2009, 3:23.
  • [13]Cauda F, Cavanna AE, D'agata F, Sacco K, Duca S, Geminiani GC: Functional Connectivity and Coactivation of the Nucleus Accumbens: A Combined Functional Connectivity and Structure-Based Meta-analysis. J Cogn Neurosci 2011, 23:2864-2877.
  • [14]Eickhoff SB, Jbabdi S, Caspers S, Laird AR, Fox PT, Zilles K, Behrens TE: Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum. J Neurosci 2010, 30(18):6409-6421.
  • [15]Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT: Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 2009, 30(9):2907-2926.
  • [16]Robinson JL, Laird AR, Glahn DC, Lovallo WR, Fox PT: Metaanalytic connectivity modeling: delineating the functional connectivity of the human amygdala. Hum Brain Mapp 2010, 31(2):173-184.
  • [17]Toro R, Fox PT, Paus T: Functional coactivation map of the human brain. Cereb Cortex 2008, 18(11):2553-2559.
  • [18]van den Heuvel MP, Hulshoff Pol HE: Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 2010, 20(8):519-534.
  • [19]Talairach JT P: Co-Planar Stereotaxic Atlas of the Human Brain. New York: Thieme Medical Publishers; 1988.
  • [20]Fox PT, Lancaster JL: Opinion: Mapping context and content: the BrainMap model. Nat Rev Neurosci 2002, 3(4):319-321.
  • [21]Laird AR, Lancaster JL, Fox PT: BrainMap: the social evolution of a human brain mapping database. Neuroinformatics 2005, 3(1):65-78.
  • [22]The BrainMap Project [http://www.brainmap.org/] webcite
  • [23]Laird AR, Fox PM, Price CJ, Glahn DC, Uecker AM, Lancaster JL, Turkeltaub PE, Kochunov P, Fox PT: ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp 2005, 25(1):155-164.
  • [24]Multi-image Analysis GUI [http://ric.uthscsa.edu/mango/] webcite
  • [25]Kochunov P, Lancaster J, Thompson P, Toga AW, Brewer P, Hardies J, Fox P: An optimized individual target brain in the Talairach coordinate system. Neuroimage 2002, 17(2):922-927.
  • [26]1000 Functional Connectomes Project [http://fcon_1000.projects.nitrc.org/] webcite
  • [27]Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kotter R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ, Peltier SJ, Petersen SE, Riedl V, Rombouts SA, Rypma B, Schlaggar BL, Schmidt S, Seidler RD, Siegle GJ, Sorg C, Teng GJ, Veijola J, Villringer A, Walter M, Wang L, Weng XC, Whitfield-Gabrieli S, Williamson P, Windischberger C, Zang YF, Zhang HY, Castellanos FX, Milham MP: Toward discovery science of human brain function. Proc Natl Acad Sci U S A 2010, 107(10):4734-4739.
  • [28]Lancaster JL, Tordesillas-Gutierrez D, Martinez M, Salinas F, Evans A, Zilles K, Mazziotta JC, Fox PT: Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum Brain Mapp 2007, 28(11):1194-1205.
  • [29]GingerALE [http://www.brainmap.org/ale/] webcite
  • [30]Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 2010, 103(1):297-321.
  • [31]Statistical Parametric Mapping (SPM) [http://www.fil.ion.ucl.ac.uk/spm/] webcite
  • [32]Song XW, Dong ZY, Long XY, Li SF, Zuo XN, Zhu CZ, He Y, Yan CG, Zang YF: REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One 2011, 6(9):e25031.
  • [33]Forum of resting-state fMRI [http://www.restfmri.net] webcite
  • [34]Chao-Gan Y, Yu-Feng Z: DPARSF: A MATLAB Toolbox for "Pipeline" Data Analysis of Resting-State fMRI. Front Syst Neurosci 2010, 4:13.
  • [35]Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT: Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 2000, 10(3):120-131.
  • [36]Lancaster JL, Rainey LH, Summerlin JL, Freitas CS, Fox PT, Evans AC, Toga AW, Mazziotta JC: Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward-transform method. Hum Brain Mapp 1997, 5(4):238-242.
  • [37]Duncan J, Owen AM: Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 2000, 23(10):475-483.
  • [38]MacDonald AW 3rd, Cohen JD, Stenger VA, Carter CS: Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 2000, 288(5472):1835-1838.
  • [39]Weissman DH, Perkins AS, Woldorff MG: Cognitive control in social situations: a role for the dorsolateral prefrontal cortex. Neuroimage 2008, 40(2):955-962.
  • [40]Badre D, Poldrack RA, Pare-Blagoev EJ, Insler RZ, Wagner AD: Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron 2005, 47(6):907-918.
  • [41]Fiebach CJ, Schlesewsky M, Lohmann G, von Cramon DY, Friederici AD: Revisiting the role of Broca's area in sentence processing: syntactic integration versus syntactic working memory. Hum Brain Mapp 2005, 24(2):79-91.
  • [42]Amiez C, Kostopoulos P, Champod AS, Petrides M: Local morphology predicts functional organization of the dorsal premotor region in the human brain. J Neurosci 2006, 26(10):2724-2731.
  • [43]Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 2005, 102(27):9673-9678.
  • [44]Eckert U, Metzger CD, Buchmann JE, Kaufmann J, Osoba A, Li M, Safron A, Liao W, Steiner J, Bogerts B, Walter M: Preferential networks of the mediodorsal nucleus and centromedian-parafascicular complex of the thalamus-A DTI tractography study. Hum Brain Mapp 2011. Epub ahead of print
  • [45]Klein JC, Rushworth MF, Behrens TE, Mackay CE, de Crespigny AJ, D'Arceuil H, Johansen-Berg H: Topography of connections between human prefrontal cortex and mediodorsal thalamus studied with diffusion tractography. Neuroimage 2010, 51(2):555-564.
  • [46]Buchsbaum MS, Buchsbaum BR, Chokron S, Tang C, Wei TC, Byne W: Thalamocortical circuits: fMRI assessment of the pulvinar and medial dorsal nucleus in normal volunteers. Neurosci Lett 2006, 404(3):282-287.
  • [47]Barbas H: Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Res Bull 2000, 52(5):319-330.
  • [48]Laird AR, Robinson JL, McMillan KM, Tordesillas-Gutierrez D, Moran ST, Gonzales SM, Ray KL, Franklin C, Glahn DC, Fox PT, Lancaster JL: Comparison of the disparity between Talairach and MNI coordinates in functional neuroimaging data: validation of the Lancaster transform. Neuroimage 2010, 51(2):677-683.
  • [49]Johansen-Berg H, Behrens TE, Sillery E, Ciccarelli O, Thompson AJ, Smith SM, Matthews PM: Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. Cereb Cortex 2005, 15(1):31-39.
  • [50]Behrens TE, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CA, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 2003, 6(7):750-757.
  • [51]Thalamic Connectivity Atlas [http://www.fmrib.ox.ac.uk/connect/] webcite
  • [52]Van der Werf YD, Scheltens P, Lindeboom J, Witter MP, Uylings HB, Jolles J: Deficits of memory, executive functioning and attention following infarction in the thalamus; a study of 22 cases with localised lesions. Neuropsychologia 2003, 41(10):1330-1344.
  • [53]Carter CS, van Veen V: Anterior cingulate cortex and conflict detection: an update of theory and data. Cogn Affect Behav Neurosci 2007, 7(4):367-379.
  • [54]Friston KJ, Frith CD, Liddle PF, Frackowiak RS: Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 1993, 13(1):5-14.
  • [55]Smith SM, Miller KL, Moeller S, Xu J, Auerbach EJ, Woolrich MW, Beckmann CF, Jenkinson M, Andersson J, Glasser MF, Van Essen DC, Feinberg DA, Yacoub ES, Ugurbil K: Temporally-independent functional modes of spontaneous brain activity. Proc Natl Acad Sci U S A 2012, 109(8):3131-3136.
  • [56]Lancaster JL, Laird AR, Eickhoff SB, Martinez MJ, Fox PM, Fox PT: Automated regional behavioral analysis for human brain images. Front Neuroinform 2012, 6:23.
  • [57]Badre D, D'Esposito M: Is the rostro-caudal axis of the frontal lobe hierarchical? Nat Rev Neurosci 2009, 10(9):659-669.
  • [58]Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD: Large-scale automated synthesis of human functional neuroimaging data. Nat Methods 2011, 8(8):665-670.
  • [59]Chikazoe J: Localizing performance of go/no-go tasks to prefrontal cortical subregions. Curr Opin Psychiatry 2010, 23(3):267-272.
  • [60]Poldrack RA: Can cognitive processes be inferred from neuroimaging data? Trends Cogn Sci 2006, 10(2):59-63.
  文献评价指标  
  下载次数:20次 浏览次数:18次