期刊论文详细信息
BMC Genomics
Using whole-genome sequences of the LG/J and SM/J inbred mouse strains to prioritize quantitative trait genes and nucleotides
Heather A Lawson1  James M Cheverud3  Justin C Fay1  Sung Chun2  Donald F Conrad1  Igor Nikolskiy1 
[1]Department of Genetics, Washington University School of Medicine, 660 S Euclid Ave, St Louis 63110, MO, USA
[2]Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
[3]Department of Biology, Loyola University, Chicago, IL, USA
关键词: Small nucleotide variant (SNV);    Whole genome sequence;    Candidate loci;    Quantitative trait nucleotide (QTN);    Quantitative trait gene (QTG);    Predicted deleterious mutations;    Identity-by-descent (IBD);    Complex traits;    Quantitative trait loci (QTL);    Mouse models;   
Others  :  1208964
DOI  :  10.1186/s12864-015-1592-3
 received in 2014-10-28, accepted in 2015-04-28,  发布年份 2015
PDF
【 摘 要 】

Background

The laboratory mouse is the most commonly used model for studying variation in complex traits relevant to human disease. Here we present the whole-genome sequences of two inbred strains, LG/J and SM/J, which are frequently used to study variation in complex traits as diverse as aging, bone-growth, adiposity, maternal behavior, and methamphetamine sensitivity.

Results

We identified small nucleotide variants (SNVs) and structural variants (SVs) in the LG/J and SM/J strains relative to the reference genome and discovered novel variants in these two strains by comparing their sequences to other mouse genomes. We find that 39% of the LG/J and SM/J genomes are identical-by-descent (IBD). We characterized amino-acid changing mutations using three algorithms: LRT, PolyPhen-2 and SIFT. We also identified polymorphisms between LG/J and SM/J that fall in regulatory regions and highly informative transcription factor binding sites (TFBS). We intersected these functional predictions with quantitative trait loci (QTL) mapped in advanced intercrosses of these two strains. We find that QTL are both over-represented in non-IBD regions and highly enriched for variants predicted to have a functional impact. Variants in QTL associated with metabolic (231 QTL identified in an F16 generation) and developmental (41 QTL identified in an F34 generation) traits were interrogated and we highlight candidate quantitative trait genes (QTG) and nucleotides (QTN) in a QTL on chr13 associated with variation in basal glucose levels and in a QTL on chr6 associated with variation in tibia length.

Conclusions

We show how integrating genomic sequence with QTL reduces the QTL search space and helps researchers prioritize candidate genes and nucleotides for experimental follow-up. Additionally, given the LG/J and SM/J phylogenetic context among inbred strains, these data contribute important information to the genomic landscape of the laboratory mouse.

【 授权许可】

   
2015 Nikolskiy et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150601022815635.pdf 1833KB PDF download
Figure 4. 195KB Image download
Figure 3. 51KB Image download
Figure 2. 21KB Image download
Figure 1. 118KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Beck JA, Lloyd S, Hafezparast M, Lennon-Pierce M, Eppig JT, Festing MF et al.. Genealogies of mouse inbred strains. Nat Genet. 2000; 24(1):23-25.
  • [2]Goodale HD. A study of the inheritance of body weight in the albino mouse by selection. J Hered. 1938; 29:101-112.
  • [3]Wilson SP, Goodale HD, Kyle WH, Godfrey EF. Long term selection for body weight in mice. The Journal of Heredity. 1971;62:228–34.
  • [4]MacArthur JW. Genetics of body size and related characters. I.Selecting small and large races of the laboratory mouse. Am Nat. 1944; 78(775):142-157.
  • [5]Hrbek T, de Brito RA, Wang B, Pletscher LS, Cheverud JM. Genetic characterization of a new set of recombinant inbred lines (LGXSM) formed from the inter-cross of SM/J and LG/J inbred mouse strains. Mamm Genome. 2006; 17(5):417-429.
  • [6]Chai CK. Analysis of quantitative inheritance of body size in mice. I: hybridization and maternal influence. Genetics. 1956; 41:157-164.
  • [7]Chai CK. Analysis of quantitative inheritance of body size in mice. III. Dominance. Genetics. 1957; 42(5):601-607.
  • [8]Chai CK. Analysis of quantitative inheritance of body size in mice. II: gene action and segregation. Genetics. 1956; 41:167-178.
  • [9]Chai CK. Analysis of quantitative inheritance of body size in mice. IV. An attempt to isolate polygenes. Genet Res. 1961; 2:25-32.
  • [10]Chai CK. Analysis of quantitative inheritance of body size in mice. V. Effects of small numbers of polygenes on similar genetic backgrounds. Genet Res. 1968; 11(3):239-246.
  • [11]Cheverud JM, Routman EJ, Duarte FA, van Swinderen B, Cothran K, Perel C. Quantitative trait loci for murine growth. Genetics. 1996; 142(4):1305-1319.
  • [12]Vaughn TT, Pletscher LS, Peripato A, King-Ellison K, Adams E, Erikson C et al.. Mapping quantitative trait loci for murine growth: a closer look at genetic architecture. Genet Res. 1999; 74(3):313-322.
  • [13]Wu R, Wang Z, Zhao W, Cheverud JM. A mechanistic model for genetic machinery of ontogenetic growth. Genetics. 2004; 168(4):2383-2394.
  • [14]Zhao W, Ma C, Cheverud JM, Wu R. A unifying statistical model for QTL mapping of genotype x sex interaction for developmental trajectories. Physiol Genomics. 2004; 19(2):218-227.
  • [15]Lin M, Ma CX, Zhao W, Cheverud JM, Wu R. Mechanistic mapping of ontogenetic growth based on biological principles. Growth Dev Aging. 2005; 69(1):31-37.
  • [16]Zhao W, Chen YQ, Casella G, Cheverud JM, Wu R. A non-stationary model for functional mapping of complex traits. Bioinformatics. 2005; 21(10):2469-2477.
  • [17]Long F, Chen YQ, Cheverud JM, Wu R. Genetic mapping of allometric scaling laws. Genet Res. 2006; 87(3):207-216.
  • [18]Hager R, Cheverud JM, Wolf JB. Relative contribution of additive, dominance, and imprinting effects to phenotypic variation in body size and growth between divergent selection lines of mice. Evolution. 2009; 63(5):1118-1128.
  • [19]Kramer M, Vaughn TC, Pletscher LS, King-Ellison K, Adams E, Erikson C et al.. Genetic variation in body weight growth and composition in the intercross of large (LG/J) and small (SM/J) inbred strains of mice. Genet Mol Biol. 1998; 21:211-218.
  • [20]Leamy LJ, Routman E, Cheverud J. Quantitative trait loci for early and late developing skull characters in mice: a test of the genetic independence model of morphological integration. Am Nat. 1999; 153:201-214.
  • [21]Wolf JB, Leamy LJ, Routman EJ, Cheverud JM. Epistatic pleiotropy and the genetic architecture of covariation within early and late-developing skull trait complexes in mice. Genetics. 2005; 171(2):683-694.
  • [22]Roseman C, Kenney-Hunt J, Cheverud J. Phenotypic integration without modularity: testing hypotheses about the distribution of pleiotropic quantitative trait loci in a continuous space. Evol Biol. 2009; 36:282-291.
  • [23]Cheverud J, Routman E, Irschick D. Pleiotropic effects of individual gene loci on mandibular morphology. Evolution. 1997; 51:2004-2014.
  • [24]Cheverud JM, Ehrich TH, Vaughn TT, Koreishi SF, Linsey RB, Pletscher LS. Pleiotropic effects on mandibular morphology II: differential epistasis and genetic variation in morphological integration. J Exp Zool B Mol Dev Evol. 2004; 302(5):424-435.
  • [25]Klingenberg CP, Leamy LJ, Routman EJ, Cheverud JM. Genetic architecture of mandible shape in mice: effects of quantitative trait loci analyzed by geometric morphometrics. Genetics. 2001; 157(2):785-802.
  • [26]Ehrich TH, Vaughn TT, Koreishi SF, Linsey RB, Pletscher LS, Cheverud JM. Pleiotropic effects on mandibular morphology I. Developmental morphological integration and differential dominance. J Exp Zool B Mol Dev Evol. 2003; 296(1):58-79.
  • [27]Leamy LJ, Pomp D, Eisen EJ, Cheverud JM. Quantitative trait loci for directional but not fluctuating asymmetry of mandible characters in mice. Genet Res. 2000; 76(1):27-40.
  • [28]Leamy LJ, Pomp D, Eisen EJ, Cheverud JM. Pleiotropy of quantitative trait loci for organ weights and limb bone lengths in mice. Physiol Genomics. 2002; 10(1):21-29.
  • [29]Leamy LJ, Klingenberg CP, Sherratt E, Wolf JB, Cheverud JM. A search for quantitative trait loci exhibiting imprinting effects on mouse mandible size and shape. Heredity (Edinb). 2008; 101(6):518-526.
  • [30]Willmore KE, Roseman CC, Rogers J, Cheverud JM, Richtsmeier JT. Comparison of mandibular phenotypic and genetic integration between baboon and mouse. Evol Biol. 2009; 36(1):19-36.
  • [31]Workman MS, Leamy LJ, Routman EJ, Cheverud JM. Analysis of quantitative trait locus effects on the size and shape of mandibular molars in mice. Genetics. 2002; 160(4):1573-1586.
  • [32]Leamy LJ, Workman MS, Routman EJ, Cheverud JM. An epistatic genetic basis for fluctuating asymmetry of tooth size and shape in mice. Heredity (Edinb). 2005; 94(3):316-325.
  • [33]Kenney-Hunt JP, Vaughn TT, Pletscher LS, Peripato A, Routman E, Cothran K et al.. Quantitative trait loci for body size components in mice. Mamm Genome. 2006; 17(6):526-537.
  • [34]Norgard EA, Roseman CC, Fawcett GL, Pavlicev M, Morgan CD, Pletscher LS et al.. Identification of quantitative trait loci affecting murine long bone length in a two-generation intercross of LG/J and SM/J mice. J Bone Miner Res. 2008; 23(6):887-895.
  • [35]Pavlicev M, Kenney-Hunt JP, Norgard EA, Roseman CC, Wolf JB, Cheverud JM. Genetic variation in pleiotropy: differential epistasis as a source of variation in the allometric relationship between long bone lengths and body weight. Evolution. 2008; 62(1):199-213.
  • [36]Norgard EA, Jarvis JP, Roseman CC, Maxwell TJ, Kenney-Hunt JP, Samocha KE et al.. Replication of long-bone length QTL in the F9–F10 LG, SM advanced intercross. Mamm Genome. 2009; 20(4):224-235.
  • [37]Norgard EA, Lawson HA, Pletscher LS, Wang B, Brooks VR, Wolf JB et al.. Genetic factors and diet affect long-bone length in the F34 LG, SM advanced intercross. Mamm Genome. 2011; 22(3–4):178-196.
  • [38]Reich MS, Jarvis JP, Silva MJ, Cheverud JM. Genetic relationships between obesity and osteoporosis in LGXSM recombinant inbred mice. Genet Res (Camb). 2008; 90(5):433-444.
  • [39]Carson EA, Kenney-Hunt JP, Pavlicev M, Bouckaert KA, Chinn AJ, Silva MJ et al.. Weak genetic relationship between trabecular bone morphology and obesity in mice. Bone. 2012; 51(1):46-53.
  • [40]Cheverud JM, Vaughn TT, Pletscher LS, Peripato AC, Adams ES, Erikson CF et al.. Genetic architecture of adiposity in the cross of LG/J and SM/J inbred mice. Mamm Genome. 2001; 12(1):3-12.
  • [41]Cheverud JM, Ehrich TH, Hrbek T, Kenney JP, Pletscher LS, Semenkovich CF. Quantitative trait loci for obesity- and diabetes-related traits and their dietary responses to high-fat feeding in LGXSM recombinant inbred mouse strains. Diabetes. 2004; 53(12):3328-3336.
  • [42]Cheverud JM, Ehrich TH, Kenney JP, Pletscher LS, Semenkovich CF. Genetic evidence for discordance between obesity- and diabetes-related traits in the LGXSM recombinant inbred mouse strains. Diabetes. 2004; 53(10):2700-2708.
  • [43]Fawcett GL, Roseman CC, Jarvis JP, Wang B, Wolf JB, Cheverud JM. Genetic architecture of adiposity and organ weight using combined generation QTL analysis. Obesity (Silver Spring). 2008; 16(8):1861-1868.
  • [44]Fawcett GL, Jarvis JP, Roseman CC, Wang B, Wolf JB, Cheverud JM. Fine-mapping of obesity-related quantitative trait loci in an F9/10 advanced intercross line. Obesity (Silver Spring). 2010; 18(7):1383-1392.
  • [45]Parker CC, Cheng R, Sokoloff G, Lim JE, Skol AD, Abney M et al.. Fine-mapping alleles for body weight in LG/J x SM/J F and F(34) advanced intercross lines. Mamm Genome. 2011; 22(9–10):563-571.
  • [46]Ehrich TH, Kenney JP, Vaughn TT, Pletscher LS, Cheverud JM. Diet, obesity, and hyperglycemia in LG/J and SM/J mice. Obes Res. 2003; 11(11):1400-1410.
  • [47]Ehrich TH, Kenney-Hunt JP, Pletscher LS, Cheverud JM. Genetic variation and correlation of dietary response in an advanced intercross mouse line produced from two divergent growth lines. Genet Res. 2005; 85(3):211-222.
  • [48]Cheverud JM, Lawson HA, Fawcett GL, Wang B, Pletscher LS ARF, Maxwell TJ et al.. Diet-dependent genetic and genomic imprinting effects on obesity in mice. Obesity (Silver Spring). 2011; 19(1):160-170.
  • [49]Lawson HA, Zelle KM, Fawcett GL, Wang B, Pletscher LS, Maxwell TJ et al.. Genetic, epigenetic, and gene-by-diet interaction effects underlie variation in serum lipids in a LG/JxSM/J murine model. J Lipid Res. 2010; 51(10):2976-2984.
  • [50]Lawson HA, Lee A, Fawcett GL, Wang B, Pletscher LS, Maxwell TJ et al.. The importance of context to the genetic architecture of diabetes-related traits is revealed in a genome-wide scan of a LG/J x SM/J murine model. Mamm Genome. 2011; 22(3–4):197-208.
  • [51]Lawson HA, Cady JE, Partridge C, Wolf JB, Semenkovich CF, Cheverud JM. Genetic effects at pleiotropic loci are context-dependent with consequences for the maintenance of genetic variation in populations. PLoS Genet. 2011; 7(9): Article ID e1002256
  • [52]Jarvis JP, Kenney-Hunt J, Ehrich TH, Pletscher LS, Semenkovich CF, Cheverud JM. Maternal genotype affects adult offspring lipid, obesity, and diabetes phenotypes in LGXSM recombinant inbred strains. J Lipid Res. 2005; 46(8):1692-1702.
  • [53]Hager R, Cheverud JM, Wolf JB. Maternal effects as the cause of parent-of-origin effects that mimic genomic imprinting. Genetics. 2008; 178(3):1755-1762.
  • [54]Wolf JB, Vaughn TT, Pletscher LS, Cheverud JM. Contribution of maternal effect QTL to genetic architecture of early growth in mice. Heredity (Edinb). 2002; 89(4):300-310.
  • [55]Wolf JB, Leamy LJ, Roseman CC, Cheverud JM. Disentangling prenatal and postnatal maternal genetic effects reveals persistent prenatal effects on offspring growth in mice. Genetics. 2011; 189(3):1069-1082.
  • [56]Wolf J, Cheverud JM. Detecting maternal-effect Loci by statistical cross-fostering. Genetics. 2012; 191(1):261-277.
  • [57]Wolf JB, Cheverud JM, Roseman C, Hager R. Genome-wide analysis reveals a complex pattern of genomic imprinting in mice. PLoS Genet. 2008; 4(6): Article ID e1000091
  • [58]Cheverud JM, Lawson HA, Funk R, Zhou J, Blankenhorn EP, Heber-Katz E. Healing quantitative trait loci in a combined cross analysis using related mouse strain crosses. Heredity (Edinb). 2012; 108(4):441-446.
  • [59]Cheverud JM, Lawson HA, Bouckaert K, Kossenkov AV, Showe LC, Cort L, et al. Fine-mapping quantitative trait loci affecting murine external ear tissue regeneration in the LG/J by SM/J advanced intercross line. Heredity (Edinb). 2014;112:508–18.
  • [60]Blankenhorn EP, Bryan G, Kossenkov AV, Clark LD, Zhang XM, Chang C et al.. Genetic loci that regulate healing and regeneration in LG/J and SM/J mice. Mamm Genome. 2009; 20(11–12):720-733.
  • [61]Bedelbaeva K, Snyder A, Gourevitch D, Clark L, Zhang XM, Leferovich J et al.. Lack of p21 expression links cell cycle control and appendage regeneration in mice. Proc Natl Acad Sci U S A. 2010; 107(13):5845-5850.
  • [62]Rai MF, Hashimoto S, Johnson EE, Janiszak KL, Fitzgerald J, Heber-Katz E, et al. Heritability of articular cartilage regeneration and its association with ear-wound healing. Arthritis Rheum. 2012;64:2300–10.
  • [63]Hashimoto S, Rai MF, Janiszak KL, Cheverud JM, Sandell LJ. Cartilage and bone changes during development of post-traumatic osteoarthritis in selected LGXSM recombinant inbred mice. Osteoarthritis Cartilage. 2012; 20(6):562-571.
  • [64]Samocha KE, Lim JE, Cheng R, Sokoloff G, Palmer AA. Fine mapping of QTL for prepulse inhibition in LG/J and SM/J mice using F(2) and advanced intercross lines. Genes Brain Behav. 2010; 9(7):759-767.
  • [65]Cheng R, Lim JE, Samocha KE, Sokoloff G, Abney M, Skol AD et al.. Genome-wide association studies and the problem of relatedness among advanced intercross lines and other highly recombinant populations. Genetics. 2010; 185(3):1033-1044.
  • [66]Bartnikas TB, Parker CC, Cheng R, Campagna DR, Lim JE, Palmer AA, et al. QTLs for murine red blood cell parameters in LG/J and SM/J F(2) and advanced intercross lines. Mamm Genome. 2012;23:356–66.
  • [67]Carroll AM, Palmer AA, Lionikas A. QTL analysis of type I and type IIA fibers in soleus muscle in a cross between LG/J and SM/J mouse strains. Front Genet. 2011; 2:99.
  • [68]Lionikas A, Cheng R, Lim JE, Palmer AA, Blizard DA. Fine-mapping of muscle weight QTL in LG/J and SM/J intercrosses. Physiol Genomics. 2010; 42A(1):33-38.
  • [69]Yalcin B, Wong K, Agam A, Goodson M, Keane TM, Gan X et al.. Sequence-based characterization of structural variation in the mouse genome. Nature. 2011; 477(7364):326-329.
  • [70]Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B et al.. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature. 2011; 477(7364):289-294.
  • [71]Petkov PM, Graber JH, Churchill GA, DiPetrillo K, King BL, Paigen K. Evidence of a large-scale functional organization of mammalian chromosomes. PLoS Genet. 2005; 1(3): Article ID e33
  • [72]Eppig JT, Blake JA, Bult CJ, Kadin JA, Richardson JE. The mouse genome database (MGD): comprehensive resource for genetics and genomics of the laboratory mouse. Nucleic Acids Res. 2012; 40(1):881-886.
  • [73]Chun S, Fay JC. Identification of deleterious mutations within three human genomes. Genome Res. 2009; 19(9):1553-1561.
  • [74]Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al.. A method and server for predicting damaging missense mutations. Nat Methods. 2010; 7(4):248-249.
  • [75]Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009; 4(7):1073-1081.
  • [76]McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. Deriving the consequences of genomic variants with the ensembl API and SNP effect predictor. Bioinformatics. 2010; 26(16):2069-2070.
  • [77]Cavalcanti DM, Castro LM, Rosa Neto JC, Seelaender M, Neves RX, Oliveira V et al.. Neurolysin knockout mice generation and initial phenotype characterization. J Biol Chem. 2014; 289(22):15426-15440.
  • [78]Partridge CG, Fawcett GL, Wang B, Semenkovich CF, Cheverud JM. The effect of dietary fat intake on hepatic gene expression in LG/J AND SM/J mice. BMC Genomics. 2014; 15:99. BioMed Central Full Text
  • [79]Schinke T, Gebauer M, Schilling AF, Lamprianou S, Priemel M, Mueldner C et al.. The protein tyrosine phosphatase rptpzeta is expressed in differentiated osteoblasts and affects bone formation in mice. Bone. 2008; 42(3):524-534.
  • [80]Witte F, Dokas J, Neuendorf F, Mundlos S, Stricker S. Comprehensive expression analysis of all Wnt genes and their major secreted antagonists during mouse limb development and cartilage differentiation. Gene Expr Patterns. 2009; 9(4):215-223.
  • [81]Kemp JP, Medina-Gomez C, Estrada K, St Pourcain B, Heppe DH, Warrington NM et al.. Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment. PLoS Genet. 2014; 10(6): Article ID e1004423
  • [82]Toledo SR, Oliveira ID, Okamoto OK, Zago MA, de Seixas Alves MT, Filho RJ et al.. Bone deposition, bone resorption, and osteosarcoma. J Orthop Res. 2010; 28(9):1142-1148.
  • [83]Zambuzzi WF, Milani R, Teti A. Expanding the role of Src and protein-tyrosine phosphatases balance in modulating osteoblast metabolism: lessons from mice. Biochimie. 2010; 92(4):327-332.
  • [84]Bray GA, York DA. Genetically transmitted obesity in rodents. Physiol Rev. 1971; 51(3):598-646.
  • [85]Wang JR, de Villena FP, Lawson HA, Cheverud JM, Churchill GA, McMillan L. Imputation of single-nucleotide polymorphisms in inbred mice using local phylogeny. Genetics. 2012; 190(2):449-458.
  • [86]DiPetrillo K, Wang X, Stylianou IM, Paigen B. Bioinformatics toolbox for narrowing rodent quantitative trait loci. Trends Genet. 2005; 21(12):683-692.
  • [87]Kraja AT, Lawson HA, Arnett DK, Borecki IB, Broeckel U, de Las Fuentes L, et al. Obesity-insulin targeted genes in the 3p26-25 region in human studies and LG/J and SM/J mice. Metabolism. 2012;61:1129–41.
  • [88]Lawson HA. Animal models of metabolic syndrome. In: Animal models of human disease. Conn M, editor. Elsevier, Cambridge; 2013: p.243-264. vol. 1
  • [89]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al.. The sequence alignment/Map format and SAMtools. Bioinformatics. 2009; 25(16):2078-2079.
  • [90]Garrison E, Marth G: Haplotype-based variant detection from short-read sequencing. In.: arXiv preprint arXiv:1207.3907[q-bio.GN]; 2012.
  • [91]Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM et al.. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001; 29(1):308-311.
  • [92]Wong K, Keane TM, Stalker J, Adams DJ. Enhanced structural variant and breakpoint detection using SVMerge by integration of multiple detection methods and local assembly. Genome Biol. 2010; 11(12):R128. BioMed Central Full Text
  • [93]Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS et al.. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods. 2009; 6(9):677-681.
  • [94]Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics. 2009; 25(21):2865-2871.
  • [95]Simpson JT, McIntyre RE, Adams DJ, Durbin R. Copy number variant detection in inbred strains from short read sequence data. Bioinformatics. 2010; 26(4):565-567.
  • [96]Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de bruijn graphs. Genome Res. 2008; 18(5):821-829.
  • [97]Korhonen J, Martinmaki P, Pizzi C, Rastas P, Ukkonen E. MOODS: fast search for position weight matrix matches in DNA sequences. Bioinformatics. 2009; 25(23):3181-3182.
  • [98]Bryne JC, Valen E, Tang MH, Marstrand T, Winther O, da Piedade I et al.. JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res. 2008; 36(Database issue):D102-106.
  • [99]Visser: Depmix: An R-package for fitting mixture models on mixed multivariate data with Markov dependencies. In: R-package manual and introduction into Dependent Mixture models. 2007. [dssm.unipa.it/CRAN/web/packages/depmix/citation.html]
  • [100]Calenge C. The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model. 2006; 197:516-519.
  • [101]Karolchik D, Barber GP, Casper J, Clawson H, Cline MS, Diekhans M et al.. The UCSC genome browser database: 2014 update. Nucleic Acids Res. 2014; 42(Database issue):D764-770.
  文献评价指标  
  下载次数:23次 浏览次数:17次