期刊论文详细信息
BMC Evolutionary Biology
Molecules and fossils reveal punctuated diversification in Caribbean “faviid” corals
David B Carlon1  Ann F Budd3  Sonja A Schwartz2 
[1] Department of Biology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA;Department of Environmental Science, Policy & Management, University of California, Berkeley, CA, 94720, USA;Department of Geoscience, University of Iowa, Iowa City, IA, 52242, USA
关键词: Coral reef;    Pliocene;    Miocene;    Adaptive radiation;    Speciation;    Scleractinia;   
Others  :  1140775
DOI  :  10.1186/1471-2148-12-123
 received in 2011-12-15, accepted in 2012-07-25,  发布年份 2012
PDF
【 摘 要 】

Background

Even with well-known sampling biases, the fossil record is key to understanding macro-evolutionary patterns. During the Miocene to Pleistocene in the Caribbean Sea, the fossil record of scleractinian corals shows a remarkable period of rapid diversification followed by massive extinction. Here we combine a time-calibrated molecular phylogeny based on three nuclear introns with an updated fossil stratigraphy to examine patterns of radiation and extinction in Caribbean corals within the traditional family Faviidae.

Results

Concatenated phylogenetic analysis showed most species of Caribbean faviids were monophyletic, with the exception of two Manicina species. The time-calibrated tree revealed the stem group originated around the closure of the Tethys Sea (17.0 Ma), while the genus Manicina diversified during the Late Miocene (8.20 Ma), when increased sedimentation and productivity may have favored free-living, heterotrophic species. Reef and shallow water specialists, represented by Diploria and Favia, originate at the beginning of the Pliocene (5 – 6 Ma) as the Isthmus of Panama shoaled and regional productivity declined.

Conclusions

Later origination of the stem group than predicted from the fossil record corroborates the hypothesis of morphological convergence in Diploria and Favia genera. Our data support the rapid evolution of morphological and life-history traits among faviid corals that can be linked to Mio-Pliocene environmental changes.

【 授权许可】

   
2012 Schwartz et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325105529459.pdf 970KB PDF download
Figure 2. 113KB Image download
Figure 1. 104KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Schluter D: The ecology of adaptive radiation. Oxford University Press, Oxford; 2000.
  • [2]Gavrilets S: Fitness landscapes and the origin of species. Princeton University Press, Princeton, NJ; 2004.
  • [3]Givnish TJ, Systma KJ: Molecular evolution and adaptive radiation. Cambridge University Press, Cambridge (United Kingdom); 1997.
  • [4]Budd AF, Pandolfi JM: Evolutionary Novelty Is Concentrated at the Edge of Coral Species Distributions. Science 2010, 328(5985):1558-1561.
  • [5]Jackson JBC, Cheetham AH: Tempo and mode of speciation in the sea. Trends Ecol Evol 1999, 14(2):72-77.
  • [6]Geary DH, Hunt G, Magyar I, Schreiber H: The paradox of gradualism: phyletic evolution in two lineages of lymnocardiid bivalves (Lake Pannon, central Europe). Paleobiology 2010, 36(4):592-614.
  • [7]Hull PM, Norris RD: Evidence for abrupt speciation in a classic case of gradual evolution. Proc Natl Acad Sci USA 2009, 106(50):21224-21229.
  • [8]Hunt G: The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. Proc Natl Acad Sci USA 2007, 104(47):18404-18408.
  • [9]Gavrilets S, Losos JB: Adaptive Radiation: Contrasting Theory with Data. Science (Washington D C) 2009, 323(5915):732-737.
  • [10]Rögl F: Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Annalen des Naturhistorischen Museums in Wien 1998, 99:279-310.
  • [11]O'dea A, Jackson JBC, Fortunato H, Smith JT, D'Croz L, Johnson KG, Todd JA: Environmental change preceded Caribbean extinction by 2 million years. Proc Natl Acad Sci USA 2007, 104(13):5501-5506.
  • [12]Alva-Campbell Y, Floeter SR, Robertson DR, Bellwood DR, Bernardi G: Molecular phylogenetics and evolution of Holacanthus angelfishes (Pomacanthidae). Mol Phylogenet Evol 2010, 56(1):456-461.
  • [13]Knowlton N, Weigt LA: New dates and new rates for divergence across the Isthmus of Panama. P Roy Soc Lond B Bio 1998, 265(1412):2257-2263.
  • [14]Lessios HA: The Great American Schism: Divergence of Marine Organisms After the Rise of the Central American Isthmus. Annu Rev Ecol Evol Syst 2008, 39:63-91.
  • [15]Klaus JS, Lutz BP, McNeill DF, Budd AF, Johnson KG, Ishman SE: Rise and fall of Pliocene free-living corals in the Caribbean. Geology 2011, 39(4):375-378.
  • [16]Collins LS, Budd AF, Coates AG: Earliest evolution associated with closure of the Tropical American Seaway. Proc Natl Acad Sci USA 1996, 93(12):6069-6072.
  • [17]Jackson JBC: The future of the oceans past. Philos T R Soc B 2010, 365(1558):3765-3778.
  • [18]O'dea A, Jackson J: Environmental change drove macroevolution in cupuladriid bryozoans. P Roy Soc B-Biol Sci 2009, 276(1673):3629-3634.
  • [19]Smith JT, Jackson JBC: Ecology of extreme faunal turnover of tropical American scallops. Paleobiology 2009, 35(1):77-93.
  • [20]Todd JA, Jackson JBC, Johnson KG, Fortunato HM, Heitz A, Alvarez M, Jung P: The ecology of extinction: molluscan feeding and faunal turnover in the Caribbean Neogene. P Roy Soc Lond B Bio 2002, 269(1491):571-577.
  • [21]Budd AF, Johnson KG: Origination preceding extinction during late Cenozoic turnover of Caribbean reefs. Paleobiology 1999, 25(2):188-200.
  • [22]Johnson KG: A phylogenetic test of accelerated turnover in Neogene Caribbean brain corals (Scleractinia : Faviidae). Palaeontology 1998, 41:1247-1268.
  • [23]Baird AH, Guest JR, Willis BL: Systematic and Biogeographical Patterns in the Reproductive Biology of Scleractinian Corals. Annu Rev Ecol Evol Syst 2009, 40:551-571.
  • [24]Weil E, Vargas WL: Comparative aspects of sexual reproduction in the Caribbean coral genus Diploria (Scleractinia: Faviidae). Mar Biol 2010, 157(2):413-426.
  • [25]Greenstein BJ, Curran HA, Pandolfi JM: Shifting ecological baselines and the demise of Acropora cervicornis in the western North Atlantic and Caribbean Province: A Pleistocene perspective. Coral Reefs 1998, 17(3):249-261.
  • [26]Mesolella KJ: Zonation of uplifted Pleistocene coral reefs on Barbados, West Indies. Science 1967, 156(3775):638-640.
  • [27]Stanley SM: Paleoecology and diagenesis of Key Largo Limestone, Florida. Bull Amer Ass Petrol Geol 1966, 50(9):1927-1947.
  • [28]Hunter IG, Jones B: Coral associations of the Pleistocene Ironshore Formation, Grand Cayman. Coral Reefs 1996, 15(4):249-267.
  • [29]Johnson KG, Budd AF, Stemann TA: Extinction Selectivity and Ecology of Neogene Caribbean Reef Corals. Paleobiology 1995, 21(1):52-73.
  • [30]Budd AF, Romano SL, Smith ND, Barbeitos MS: Rethinking the Phylogeny of Scleractinian Corals: A Review of Morphological and Molecular Data. Integr Comp Biol 2010, 50(3):411-427.
  • [31]Kitahara MV, Cairns SD, Stolarski J, Blair D, Miller DJ: A Comprehensive Phylogenetic Analysis of the Scleractinia (Cnidaria, Anthozoa) Based on Mitochondrial CO1 Sequence Data. PLoS One 2010, 5(7):e11490.
  • [32]Romano SL, Cairns SD: Molecular phylogenetic hypotheses for the evolution of scleractinian corals. Bull Mar Sci 2000, 67(3):1043-1068.
  • [33]Romano SL, Palumbi SR: Evolution of scleractinian corals inferred from molecular systematics. Science 1996, 271(5249):640-642.
  • [34]Benzoni F, Stefani F, Stolarski J, Pichon M, Mitta G, Galli P: Debating phylogenetic relationships of the scleractinian Psammocora: molecular and morphological evidences. Contrib Zool 2007, 76(1):35-54.
  • [35]Fukami H, Budd AF, Paulay G, Sole-Cava A, Chen CLA, Iwao K, Knowlton N: Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature 2004, 427(6977):832-835.
  • [36]Fukami H, Chen CA, Budd AF, Collins A, Wallace C, Chuang Y-Y, Chen C, Dai C-F, Iwao K, Sheppard C, et al.: Mitochondrial and Nuclear Genes Suggest that Stony Corals Are Monophyletic but Most Families of Stony Corals Are Not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria). PLoS One 2008, 3(9):e3222.
  • [37]Huang D, Licuanan WY, Baird AH, Fukami H: Cleaning up the 'Bigmessidae': Molecular phylogeny of scleractinian corals from Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae. BMC Evol Biol 2011, 11:37. BioMed Central Full Text
  • [38]Huang DW, Meier R, Todd PA, Chou LM: More evidence for pervasive paraphyly in scleractinian corals: Systematic study of Southeast Asian Faviidae (Cnidaria; Scleractinia) based on molecular and morphological data. Mol Phylogenet Evol 2009, 50(1):102-116.
  • [39]Nunes F, Fukami H, Vollmer SV, Norris RD, Knowlton N: Re-evaluation of the systematics of the endemic corals of Brazil by molecular data. Coral Reefs 2008, 27(2):423-432.
  • [40]Forsman ZH, Barshis DJ, Hunter CL, Toonen RJ: Shape-shifting corals: Molecular markers show morphology is evolutionarily plastic in Porites. BMC Evol Biol 2009., 9
  • [41]Rambaut A, Drummond AJ: Tracer v.1.5. 2007. Available from http://beast.bio.ed.ac.uk/Tracer webcite
  • [42]Veron JEN: Corals in space and time : the biogeography and evolution of the Scleractinia. Comstock/Cornell, Ithaca; 1995.
  • [43]Arnold ML: Natural hybridization and evolution. Oxford University Press, New York; 1997.
  • [44]Johnson KG: Population-Dynamics of a Free-Living Coral - Recruitment, Growth and Survivorship of Manicina-Areolata (Linnaeus) on the Caribbean Coast of Panama. J Exp Mar Biol Ecol 1992, 164(2):171-191.
  • [45]Hey J, Nielsen R: Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proc Natl Acad Sci USA 2007, 104(8):2785-2790.
  • [46]Rokas A, Williams BL, King N, Carroll SB: Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature (London) 2003, 425(6960):798-804.
  • [47]Rokas A, Carroll SB: More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Mol Biol Evol 2005, 22(5):1337-1344.
  • [48]McNeill DF, Eberli GP, Lidz BH, Swart PK, Kenter JAM: Chronostratigraphy of prograding carbonate platform margins: A record of sea-level changes and dynamic slope sedimentation, western Great Bahama Bank. Subsurface Geology of a Prograding Carbonate Platform Margin, Great Bahama Bank: Results of the Bahamas Drilling Project: SEPM, Special Publication 2001, 70:101-136.
  • [49]Jain S, Collins LS: Trends in Caribbean Paleoproductivity related to the Neogene closure of the Central American Seaway. Mar Micropaleontol 2007, 63(1–2):57-74.
  • [50]Johnson KG: Synchronous planulation of Manicina areolata (Scleractinia) with lunar periodicity. Mar Ecol Prog Ser 1992, 87(3):265-273.
  • [51]Szmant-Froelich A, Reutter M, Riggs L: Sexual Reproduction of Favia-Fragum Lunar Patterns of Gametogenesis Embryogenesis and Planulation in Puerto-Rico. Bull Mar Sci 1985, 37(3):880-892.
  • [52]Simpson C, Kiessling W, Mewis H, Baron-Szabo RC, Müller J: Evolutionary diversification of reef corals: a comparison of the molecular and fossil records. Evolution 2011, 65(11):3274-3284.
  • [53]Yoder JB, Clancey E, Des Roches S, Eastman JM, Gentry L, Godsoe W, Hagey TJ, Jochimsen D, Oswald BP, Robertson J, et al.: Ecological opportunity and the origin of adaptive radiations. J Evolution Biol 2010, 23(8):1581-1596.
  • [54]Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, et al.: Climate change, human impacts, and the resilience of coral reefs. Science 2003, 301(5635):929-933.
  • [55]Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G, et al.: Global trajectories of the long-term decline of coral reef ecosystems. Science 2003, 301(5635):955-958.
  • [56]Van Oppen MJH, Gates RD: Conservation genetics and the resilience of reef-building corals. Mol Ecol 2006, 15(13):3863-3883.
  • [57]Boekschoten GJ, Best MB: Fossil and Recent Shallow Water Corals from the Atlantic Islands Off Western Africa Cancap-Contribution No. 56. Zoologische Mededelingen (Leiden) 1988, 62(5–9):99-112.
  • [58]Castro CB, Pires DO: Brazilian coral reefs: What we already know and what is still missing. Bull Mar Sci 2001, 69(2):357-371.
  • [59]Carlon DB, Lippé C: Estimation of mating systems in Short and Tall ecomorphs of the coral Favia fragum. Mol Ecol 2011, 20(4):812-828.
  • [60]Shearer TL, van Oppen MJH, Romano SL, Woerheide G: Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 2002, 11(12):2475-2487.
  • [61]Catmull J, Hayward DC, McIntyre NE, Reece-Hoyes JS, Mastro R, Callaerts P, Ball EE, Miller DJ: Pax-6 origins-Implications from the structure of two coral Pax genes. Dev Genes Evol 1998, 208(6):352-356.
  • [62]Chiou C-Y, Chen IP, Chen C, Wu HJ-L, Wei NV, Wallace CC, Chen CA: Analysis of Acropora muricata calmodulin (CaM) indicates that scleractinian corals possess the ancestral Exon/Intron organization of the eumetazoan CaM gene. J Mol Evol 2008, 66(4):317-324.
  • [63]Severance EG, Szmant AM, Karl SA: Single-copy gene markers isolated from the Caribbean coral, Montastraea annularis. Mol Ecol Notes 2004, 4(2):167-169.
  • [64]Stephens M, Smith NJ, Donnelly P: A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001, 68(4):978-989.
  • [65]Stephens M, Scheet P: Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 2005, 76(3):449-462.
  • [66]Flot JF: SEQPHASE: a web tool for interconverting phase input/output files and fasta sequence alignments. Mol Ecol Resour 2010, 10(1):162-166.
  • [67]Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002, 30(14):3059-3066.
  • [68]Katoh K, Toh H: Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 2008, 9(4):286-298.
  • [69]Maddison DR, Maddison WP: MacClade 4: Analysis of phylogeny and character evolution. Version 4.0. Sinauer Associates, Sunderland; 2000.
  • [70]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52(5):696-704.
  • [71]Posada D: jModelTest: Phylogenetic model averaging. Mol Biol Evol 2008, 25(7):1253-1256.
  • [72]Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17(8):754-755.
  • [73]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19(12):1572-1574.
  • [74]Stamatakis A: RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22(21):2688-2690.
  • [75]Stamatakis A, Hoover P, Rougemont J: A Rapid Bootstrap Algorithm for the RAxML Web Servers. Syst Biol 2008, 57(5):758-771.
  • [76]Miller MA, Pfeiffer W, Schwartz T: Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. In Proceedings of the Gateway Computing Environments Workshop (GCE): 14 Nov. 2010; New Orleans, LA. , ; 2010:1-8. http://www.ngbw.org/ee/index.php/portal/cite_us webcite
  • [77]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
  • [78]Nylander JAA: MrModeltest v2. Evolutionary Biology Centre, Uppsala University, ; 2004. http://www.abc.se/~nylander/mrmodeltest2/mrmodeltest2.html webcite
  • [79]Ho SYW, Phillips MJ: Accounting for Calibration Uncertainty in Phylogenetic Estimation of Evolutionary Divergence Times. Syst Biol 2009, 58(3):367-380.
  • [80]Kumar S, Skjaeveland A, Orr RJS, Enger P, Ruden T, Mevik BH, Burki F, Botnen A, Shalchian-Tabrizi K: AIR: A batch-oriented web program package for construction of supermatrices ready for phylogenomic analyses. BMC Bioinforma 2009, 10:.
  文献评价指标  
  下载次数:26次 浏览次数:27次