期刊论文详细信息
BMC Microbiology
Holdfast spreading and thickening during Caulobacter crescentus attachment to surfaces
Jay X Tang1  Yves V Brun2  Guanglai Li3 
[1] Physics Department, Brown University, Providence, RI 02912, USA;Department of Biology, Indiana University, Bloomington, IN 47405, USA;Institute of Molecular and Nanoscale Innovation, Brown University, Providence, RI 02912, USA
关键词: Biofilms;    Biofouling;    Differentiation;    Bacterial adhesion;    Bioadhesives;    Caulobacter;   
Others  :  1143618
DOI  :  10.1186/1471-2180-13-139
 received in 2013-04-02, accepted in 2013-06-13,  发布年份 2013
PDF
【 摘 要 】

Background

Adhesion to surfaces facilitates many crucial functions of microbes in their natural habitats. Thus understanding the mechanism of microbial adhesion is of broad interest to the microbiology research community.

Results

We report a study by fluorescence imaging and atomic force microscopy on the growth in size and thickness of the holdfast of synchronized Caulobacter crescentus cells as they attach to a glass surface. We found that the holdfast undergoes a two-stage process of spreading and thickening during its morphogenesis. The holdfast first forms a thin plate on the surface. The diameter of the holdfast plate reaches its final average value of 360 nm by the cell age of ~ 30 min, while its thickness further increases until the age of ~ 60 min. Our AFM analysis indicates that the holdfast is typically thicker in the middle, with gradual falloff in thickness towards the outer edge.

Conclusions

We propose that the newly secreted holdfast substance is fluid-like. It has strong affinity to the surface and cures to form a plate-like holdfast capable of supporting strong and permanent adhesion.

【 授权许可】

   
2013 Li et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329142939697.pdf 1108KB PDF download
Figure 6. 70KB Image download
Figure 5. 51KB Image download
Figure 4. 106KB Image download
Figure 3. 27KB Image download
Figure 2. 84KB Image download
Figure 1. 59KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Poindexter JS: Biological properties and classification of the Caulobacter crescentus group. Bacteriol Rev 1964, 28:231-295.
  • [2]Poindexter JS: The Caulobacters: ubiquitous unusual bacteria. Microbiol Rev 1981, 45:123-179.
  • [3]Li G, Tang JX: Low flagellar motor torque and high swimming efficiency of Caulobacter crescentus swarmer cells. Biophys J 2006, 91:2726-2734.
  • [4]Li G, Tang JX: Accumulation of Microswimmers near a Surface Mediated by Collision and Rotational Brownian Motion. Phys Rev Lett 2009, 103(7):078101.
  • [5]Berg HC, Anderson RA: Bacteria swim by rotating their flagellar filaments. Nature 1973, 245(5425):380-382.
  • [6]Berg HC: E. coli in motion. New York: Springer; 2004.
  • [7]Sommer JM, Newton A: Sequential regulation of developmental events during polar morphogenesis in Caulobacter crescentus: assembly of pili on swarmer cells requires cell separation. J Bacteriol 1988, 170:409-415.
  • [8]Wagner JK, Setayeshgar S, Sharon LA, Reilly JP, Brun YV: A nutrient uptake role for bacterial cell envelope extensions. Proc Nat Acad Sci USA 2006, 103(31):11772-11777.
  • [9]Tsang PH, Li G, Brun YV, Freund LB, Tang JX: Adhesion of single bacterial cells in the micronewton range. Proc Nat Acad Sci USA 2006, 103(15):5764-5768.
  • [10]Bodenmiller D, Toh E, Brun YV: Development of surface adhesion in Caulobacter crescentus. J Bacteriol 2004, 186(5):1438-1447.
  • [11]Levi A, Jenal U: Holdfast formation in motile swarmer cells optimizes surface attachment during Caulobacter crescentus development. J Bacteriol 2006, 188(14):5315-5318.
  • [12]Li G, Brown PJB, Tang JX, Xu J, Quardokus EM, Fuqua C, Brun YV: Surface contact stimulates the just-in-time deployment of bacterial adhesins. Mol Microbiol 2012, 83:41-45.
  • [13]Merker RI, Smit J: Characterization of the adhesive holdfast of marine and freshwater Caulobacters. Appl Environ Microbiol 1988, 54(8):2078-2085.
  • [14]Ong CJ, Wong MLY, Smit J: Attachment of the adhesive holdfast organelle to the cellular stalk of Caulobacter crescentus. J Bacteriol 1990, 172(3):1448-1456.
  • [15]Hardy GG, Allen RC, Toh E, Long M, Brown PJ, Cole-Tobian JL, Brun YV: A localized multimeric anchor attaches the Caulobacter holdfast to the cell pole. Mol Microbiol 2010, 76(2):409-427.
  • [16]Li G, Smith CS, Brun YV, Tang JX: The elastic properties of the Caulobacter crescentus adhesive holdfast are dependent on oligomers of N-acetylglucosamine. J Bacteriol 2005, 187(1):257-265.
  • [17]Degnen ST, Newton A: Chromosome replication during development in Caulobacter crescentus. J Mol Biol 1972, 129(64):671-680.
  • [18]Li G, Tang J: Diffusion of actin filaments within a thin layer between two walls. Phys Rev E 2004, 69:061921.
  • [19]Gent AN, Schultz J: Effect of wetting liquids on strength of adhesion of viscoelastic materials. J Adhesion 1972, 3(4):281-294.
  • [20]Lee LH: Roles of molecular interactions in adhesion, adsorption, contact angle and wettability. J Adhesion Sci Technol 1993, 7(6):583-634.
  • [21]Gay C: Stickiness-Some Foundamentals of Adhesion. Integr Comp Biol 2002, 42(6):1123-1126.
  • [22]Geoghegan M, Andrews JS, Biggs CA, Eboigbodin KE, Elliott DR, Rolfe S, Scholes J, Ojeda JJ, Romero-Gonzalez ME, Edyvean RG, et al.: The polymer physics and chemistry of microbial cell attachment and adhesion. Faraday Discuss 2008, 139:85-103. Discussion 105–128, 419–120
  • [23]Laus MC, Logman TJ, Lamers GE, Van Brussel AA, Carlson RW, Kijne JW: A novel polar surface polysaccharide from Rhizobium leguminosarum binds host plant lectin. Mol Microbiol 2006, 59(6):1704-1713.
  • [24]Brown PJ, Hardy GG, Trimble MJ, Brun YV: Complex regulatory pathways coordinate cell-cycle progression and development in Caulobacter crescentus. Adv Microb Physiol 2009, 54:1-101.
  • [25]Tomlinson AD, Fuqua C: Mechanisms and regulation of polar surface attachment in Agrobacterium tumefaciens. Curr Opin Microbiol 2009, 12(6):708-714.
  文献评价指标  
  下载次数:18次 浏览次数:6次