期刊论文详细信息
BMC Evolutionary Biology
Pan-African phylogeny of Mus (subgenus Nannomys) reveals one of the most successful mammal radiations in Africa
Erik Verheyen3  Herwig Leirs1  Marc Colyn7  Nicaise Amundala4  Kiros Welegerima6  Judith S Mbau8  Nicholas Oguge5  Vladimír Mazoch1,11  Leonid A Lavrenchenko2  Tatiana Aghová1,10  Yonas Meheretu6  Radim Šumbera1,11  Ondřej Mikula9  Josef Bryja1,10 
[1] Evolutionary Ecology Group, Biology Department, University of Antwerp, Antwerpen, Belgium;A.N.Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia;Royal Belgian Institute for Natural Sciences, Operational Direction Taxonomy and Phylogeny, Brussels, Belgium;University of Kisangani, Eastern Province, Kisangani, DR, Congo;Earth Watch Institute, Nairobi, Kenya;Department of Biology, College of Natural and Computational Sciences, Mekelle University, Tigray, Ethiopia;CNRS UMR 6552/53, Université de Rennes 1, Station Biologique, Paimpont, France;College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi, Kenya;Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic;Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic;Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
关键词: DNA barcoding;    Phylogeography;    Mus minutoides;    Muridae (Murinae);    Divergence timing;    Plio-Pleistocene climatic fluctuations;    Pygmy mice;    Molecular phylogeny;    Tropical Africa;    Biogeography;   
Others  :  1121766
DOI  :  10.1186/s12862-014-0256-2
 received in 2014-05-30, accepted in 2014-11-27,  发布年份 2014
PDF
【 摘 要 】

Background

Rodents of the genus Mus represent one of the most valuable biological models for biomedical and evolutionary research. Out of the four currently recognized subgenera, Nannomys (African pygmy mice, including the smallest rodents in the world) comprises the only original African lineage. Species of this subgenus became important models for the study of sex determination in mammals and they are also hosts of potentially dangerous pathogens. Nannomys ancestors colonized Africa from Asia at the end of Miocene and Eastern Africa should be considered as the place of their first radiation. In sharp contrast with this fact and despite the biological importance of Nannomys, the specimens from Eastern Africa were obviously under-represented in previous studies and the phylogenetic and distributional patterns were thus incomplete.

Results

We performed comprehensive genetic analysis of 657 individuals of Nannomys collected at approximately 300 localities across the whole sub-Saharan Africa. Phylogenetic reconstructions based on mitochondrial (CYTB) and nuclear (IRBP) genes identified five species groups and three monotypic ancestral lineages. We provide evidence for important cryptic diversity and we defined and mapped the distribution of 27 molecular operational taxonomic units (MOTUs) that may correspond to presumable species. Biogeographical reconstructions based on data spanning all of Africa modified the previous evolutionary scenarios. First divergences occurred in Eastern African mountains soon after the colonization of the continent and the remnants of these old divergences still occur there, represented by long basal branches of M. (previously Muriculus) imberbis and two undescribed species from Ethiopia and Malawi. The radiation in drier lowland habitats associated with the decrease of body size is much younger, occurred mainly in a single lineage (called the minutoides group, and especially within the species M. minutoides), and was probably linked to aridification and climatic fluctuations in middle Pliocene/Pleistocene.

Conclusions

We discovered very high cryptic diversity in African pygmy mice making the genus Mus one of the richest genera of African mammals. Our taxon sampling allowed reliable phylogenetic and biogeographic reconstructions that (together with detailed distributional data of individual MOTUs) provide a solid basis for further evolutionary, ecological and epidemiological studies of this important group of rodents.

【 授权许可】

   
2014 Bryja et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150213011733906.pdf 1946KB PDF download
Figure 4. 71KB Image download
Figure 3. 47KB Image download
Figure 2. 91KB Image download
Figure 1. 77KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B: How many species are there on earth and in the ocean? PLoS Biol 2011, 9(8):e1001127.
  • [2]Zachos FE, Apollonio M, Bärmann EV, Festa-Bianchet M, Göhlich U, Habel JC, Haring E, Kruckenhauser L, Lovari S, McDevitt AD, Pertoldi C, Rössner GE, Sánchez-Villagra MR, Scandura M, Suchentrunk F: Species inflation and taxonomic artefacts - A critical comment on recent trends in mammalian classification. Mamm Biol 2013, 78:1-6.
  • [3]Groves CP: The nature of species: A rejoinder to Zachos et al. Mamm Biol 2013, 78:7-9.
  • [4]Krishna Krishnamurthy P, Francis RA: A critical review on the utility of DNA barcoding in biodiversity conservation. Biodivers Conserv 2012, 21:1907-1919.
  • [5]Hoffmann M, Grubb P, Groves CP, Hutterer R, Van der Straeten E, Simmons N, Bergmans W: A synthesis of African and western Indian Ocean Island mammal taxa (Class: Mammalia) described between 1988 and 2008: an update to Allen (1939) and Ansell (1989). Zootaxa 2009, 2205:1-36.
  • [6]Macholán M, Baird SJE, Munclinger P, Piálek J: Evolution of the house mouse. Cambridge University Press, New York; 2012.
  • [7]Chevret P, Veyrunes F, Britton-Davidian J: Molecular phylogeny of the genus Mus (Rodentia: Murinae) based on mitochondrial and nuclear data. Biol J Linnean Soc 2005, 84:417-427.
  • [8]Meheretu Y, Šumbera R, Bryja J: Enigmatic Ethiopian endemic rodent Muriculus imberbis (Rüppell 1842) represents a separate lineage within genus Mus .Mammalia 2014, in press (doi:10.1515/mammalia-2013-0119).
  • [9]Britton-Davidian J, Robinson TJ, Veyrunes F: Systematics and evolution of the African pygmy mice, subgenus Nannomys: A review. Acta Oecol 2012, 2012(42):41-49.
  • [10]Musser GG, Carleton MD: Superfamily Muroidea. In Mammal Species of the World: A Taxonomic and Geographic Reference. Edited by Wilson DE, Reeder DM. Johns Hopkins University Press, Baltimore; 2005:894-1531.
  • [11]Veyrunes F, Britton-Davidian J, Robinson TJ, Calvet E, Denys C, Chevret P: Molecular phylogeny of the African pygmy mice, subgenus Nannomys (Rodentia, Murinae, Mus): implications for chromosomal evolution. Mol Phylogenet Evol 2005, 36:358-369.
  • [12]Kan Kouassi S, Nicolas V, Aniskine V, Lalis A, Cruaud C, Couloux A, Colyn M, Dosso M, Koivogui L, Verheyen E, Akoua-Koffi C, Denys C: Taxonomy and biogeography of the African Pygmy mice, Subgenus Nannomys (Rodentia, Murinae, Mus) in Ivory Coast and Guinea (West Africa). Mammalia 2008, 72:237-252.
  • [13]Fichet-Calvet E, Audenaert L, Barrière P, Verheyen E: Diversity, dynamics and reproduction in a community of small mammals in Upper Guinea, with emphasis on pygmy mice ecology. Afr J Ecol 2009, 48:600-614.
  • [14]Lamb J, Downs S, Eiseb S, Taylor PJ: Increased geographic sampling reveals considerable new genetic diversity in morphologically conservative African Pygmy Mice (Genus Mus; Subgenus Nannomys). Mamm Biol 2014, 79:24-35.
  • [15]Matthey R: L'eventail robertsonien chez les Mus (Leggada) africains du groupe minutoides-musculoides. Rev Suisse Zool 1970, 77(3):625-629.
  • [16]Jotterand M: Un nouveau système polymorphe chez une nouvelle espèce de Leggada (Mus goundae Petter). Experientia 1970, 26:1360-1361.
  • [17]Veyrunes F, Catalan J, Sicard B, Robinson TJ, Duplantier JM, Granjon L, Dobigny G, Britton-Davidian J: Autosome and sex chromosome diversity among the African pygmy mice, subgenus Nannomys. Chromosome Res 2004, 12:369-382.
  • [18]Veyrunes F, Watson J, Robinson TJ, Britton-Davidian J: Accumulation of rare sex chromosome rearrangements in the African pygmy mouse, Mus (Nannomys) minutoides: a whole-arm reciprocal translocation (WART) involving a X-autosome fusion. Chromosome Res 2007, 15:223-230.
  • [19]Veyrunes F, Chevret P, Catalan J, Castiglia R, Watson J, Dobigny G, Robinson TJ, Britton-Davidian J: A novel sex determination system in a close relative of the house mouse. Proc R Soc B 2010, 277:1049-1056.
  • [20]Lecompte E, ter Meulen J, Emonet S, Daffis S, Charrel RN: Genetic identification of Kodoko virus, a novel arenavirus of the African pigmy mouse (Mus Nannomys minutoides) in West Africa. Virology 2007, 364:178-183.
  • [21]de Bellocq JG, Borremans B, Katakweba A, Makundi R, Baird SJE, Becker-Ziaja B, Günther S, Leirs L: Sympatric occurrence of 3 arenaviruses, Tanzania. Emerg Infect Dis 2010, 16(4):692-695.
  • [22]Coulibaly-N’Golo D, Allali B, Kan Kouassi S, Fichet-Calvet E, Becker-Ziaja B, Rieger T, Ölschläger S, Dosso H, Denys C, ter Meulen J, Akoua-Koffi C, Günther S: Novel arenavirus sequences in Hylomyscus sp. and Mus (Nannomys) setulosus from Cote d'Ivoire: Implications for evolution of arenaviruses in Africa. PLoS One 2011, 6:e20893.
  • [23]Kronmann KC, Nimo-Paintsil S, Guirguis F, Kronmann LC, Bonney K, Obiri-Danso K, Ampofo W, Fichet-Calvet E: Two novel arenaviruses detected in Pygmy mice, Ghana. Emerg Infect Dis 2013, 19(11):1832-1835.
  • [24]Winkler AJ: Neogene paleobiogeography and East African paleoenvironments: contributions from the Tugen Hills rodents and lagomorphs. J Hum Evol 2002, 42:237-256.
  • [25]Lecompte E, Granjon L, Peterhans JK, Denys C: Cytochrome b-based phylogeny of the Praomys group (Rodentia, Murinae): a new African radiation? C R Biol 2002, 325(7):827-840.
  • [26]Stanhope MJ, Czelusniak J, Si JS, Nickeson J, Goodman M: A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophyly. Mol Phylogenet Evol 1992, 1:148-160.
  • [27]Galan M, Pagès M, Cosson JF: Next-generation sequencing for rodent barcoding: species identification from fresh, degraded and environmental samples. PLoS One 2012, 7(11):e48374.
  • [28]Stamatakis A: RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30(9):1312-1313.
  • [29]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [30]Rambaut A, Drummond AJ: Tracer v1.5. 2007.
  • [31]Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25:1451-1452.
  • [32]Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin WD, Vogler AP: Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 2006, 55(4):595-609.
  • [33]Powel JR: Accounting for uncertainty in species delineation during the analysis of environmental DNA sequence data. Methods Ecol Evol 2012, 3:1-11.
  • [34]Fujisawa T, Barraclough TG: Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: A revised method and evaluation on simulated data sets. Syst Biol 2013, 62(5):707-724.
  • [35]Drummond AJ, Suchard MA, Xie D, Rambaut A: Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 2012, 29:1969-1973.
  • [36]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [37]Baker RJ, Bradley RD: Speciation in mammals and the Genetic Species Concept. J Mammal 2006, 87:643-662.
  • [38]Lecompte E, Aplin K, Denys C, Catzeflis F, Chades M, Chevret P: Phylogeny and biogeography of African Murinae based on mitochondrial and nuclear gene sequences with a new tribal classification of the subfamily. BMC Evol Biol 2008, 8:e199. BioMed Central Full Text
  • [39]Schenk JJ, Rowe KC, Steppan SJ: Ecological opportunity and incumbency in the diversification of repeated continental colonizations by muroid rodents. Syst Biol 2013, 62:837-864.
  • [40]Jacobs LL, Flynn LJ: Of mice… again: the Siwalik rodent record, murine distribution, and molecular clocks. In Interpreting the past: essays on human, primate and mammal evolution. Edited by Lieberman D, Smith R, Kelley J. Brill Academic Publishers, Leiden; 2005:63-80.
  • [41]Denys C: Deux nouvelles espèces d’ Aethomys (Rodentia, Muridae) à Langebaanweg (Pliocène, Afrique du Sud): Implications phylogénétiques. Annales de Paléontologie 1990, 76:41-69.
  • [42]Ambrose SH, Bell CJ, Bernor RL, Boisserie J-R, Darwent CM, Degusta D, Deino A, Garcia N, Haile-Selassie Y, Head JJ, Howell FC, Kyule MD, Manthi FK, Mathu EM, Nyamai CM, Saegusa H, Stidham TA, Williams MAJ, Hlusko LJ: The paleoecology and paleogeographic context of Lemudong'o locality 1, a Late Miocene terrestrial fossil site in southern Kenya. Kirtlandia 2007, 56:38-52.
  • [43]Mein P, Pickford M, Senut B: Late Miocene micromammals from the Harasib karst deposits, Namibia: Part 2b. Cricetomyidae, Dendromuridae and Muridae, with an addendum on the Myocricetodontinae. Commun Geological Surv Namibia 2004, 13:43-61.
  • [44]Fabre PH, Hautier L, Dimitrov D, Douzery EJP: A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evol Biol 2012, 12:e88. BioMed Central Full Text
  • [45]Lemey P, Rambaut A, Drummond AJ, Suchard MA: Bayesian phylogeography finds its roots. PLoS Comput Biol 2009, 5:e1000520.
  • [46]Ree RH, Smith SA: Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst Biol 2008, 57(1):4-14.
  • [47]Ree RH, Moore BR, Webb CO, Donoghue MJ: A likelihood framework for inferring the evolution of geographic range in phylogenetic trees. Evolution 2005, 59(11):2299-2311.
  • [48]R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2013.
  • [49]Galtier N, Gouy M, Gautier C: SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 1996, 12:543-548.
  • [50]Yalden DW: Small mammals of the Bale Mountains, Ethiopia. Afr J Ecol 1988, 26:281-294.
  • [51]Lavrenchenko LA: The mammals of the isolated Harenna Forest (southern Ethiopia): structure and history of the fauna. In Isolated Vertebrate Communities in the Tropics Edited by Rheinwald G. 2000. 46:223-231
  • [52]Aniskin VM, Lavrenchenko LA, Varshavskii AA, Milishnikov AN: Karyotypes and cytogenetic differentiation of two African mouse species of genus Mus (Rodentia, Muridae). Rus J Genet 1998, 34(1):80-85.
  • [53]Yalden DW, Largen MJ, Kock D, Hillman JC: Catalogue of the mammals of Ethiopia and Eritrea. 7. Revised checklist, zoogeography and conservation. Trop Zool 1996, 9:73-164.
  • [54]Dieterlen F, Happold DCD: Mus triton Grey-bellied Pygmy Mouse. In Mammals of Africa, Volume III Rodents, hares and rabbits. Edited by Happold DCD. Bloomsbury Publishing, London and New York; 2013:497-499.
  • [55]Yalden DW, Largen MJ: The endemic mammals of Ethiopia. Mamm Rev 1992, 22:115-150.
  • [56]Vermeiren L, Verheyen WN: Notes sur les Leggada de Lamto, Cote d'Ivoire, avec la description de Leggada baoulei sp. n. (Mammalia, Muridae). Revue de Zoologie Africaine 1980, 94:570-590.
  • [57]Petter F: Les souris africaines du groupe sorella (Rongeurs, Muridés). Mammalia 1981, 45(3):313-320.
  • [58]Mboumba JF, Deleporte P, Colyn M, Nicolas V: Phylogeography of Mus (Nannomys) minutoides (Rodentia, Muridae) in West Central African savannahs: singular vicariance in neighbouring populations. J Zool Syst Evol Res 2011, 49(1):77-85.
  • [59]Brouat C, Tatard C, Bâ K, Cosson JF, Dobigny G, Fichet-Calvet E, Granjon L, Lecompte E, Loiseau A, Mouline K, Duplantier JM: Phylogeography of the Guinea Multimammate Mouse (Mastomys erythroleucus): a case study for Sahelian species in West Africa. J Biogeogr 2009, 36:2237-2250.
  • [60]Bryja J, Patzenhauerová H, Granjon L, Dobigny G, Konečný A, Duplantier JM, Gauthier P, Colyn M, Durnez L, Lalis A, Nicolas V: Plio-Pleistocene history of West African Sudanian savanna and the phylogeography of the Praomys daltoni complex (Rodentia): the environment/geography/genetic interplay. Mol Ecol 2010, 19:4783-4799.
  • [61]Dobigny G, Tatard C, Gauthier P, Ba K, Duplantier JM, Granjon L, Kergoat GJ: Mitochondrial and nuclear genes-based phylogeography of Arvicanthis niloticus (Murinae) and sub-Saharan open habitats Pleistocene history. PLoS One 2013, 8(11):e77815.
  • [62]Colangelo P, Corti M, Verheyen E, Annesi F, Oguge N, Makundi RH, Verheyen W: Mitochondrial phylogeny reveals differential modes of chromosomal evolution in the genus Tatera (Rodentia: Gerbillinae) in Africa. Mol Phylogenet Evol 2005, 35:556-568.
  • [63]McDonough MM, Sotero-Caio CG, Ferguson AW, Lewis PJ, Tswiio M, Thies ML: Mitochondrial DNA and karyotypic data confirm the presence of Mus indutus and Mus minutoides (Mammalia, Rodentia, Muridae, Nannomys) in Botswana. Zookeys 2013, 359:35-51.
  • [64]Chevret P, Robinson TJ, Perez J, Veyrunes F, Britton-Davidian J: A phylogeographic survey of the Pygmy mouse Mus minutoides in South Africa: Taxonomic and karyotypic inference from cytochrome b sequences of museum specimens. PLoS One 2014, 9(6):e98499.
  • [65]Dobigny G, Tatard C, Kane M, Gauthier P, Brouat C, Ba K, Duplantier JM: A cytotaxonomic and DNA-based survey of rodents from Northern Cameroon and Western Chad. Mammal Biol 2011, 76(4):417-427.
  • [66]Winkler AJ, Denys C, Avery MD: Rodentia. In Cenozoic Mammals of Africa. Edited by Werdelin L, Sanders WJ. University of California Press, Berkeley; 2010:263-304.
  • [67]Isaac JB, Mallet J, Mace GM: Taxonomic inflation: its influence on macroecology and conservation. Trends Ecol Evol 2004, 19:464-469.
  • [68]Lavrenchenko LA, Verheyen WN, Verheyen E, Hulselmans J, Leirs H: Morphometric and genetic study of Ethiopian Lophuromys flavopunctatus Thomas, 1888 species complex with description of three new 70-chromosomal species (Muridae, Rodentia). Bulletin de l’Insitut Royal des Sciences Naturelles de Belgique, Biologie 2007, 77:77-117.
  • [69]Berger SA, Krompass D, Stamatakis A: Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst Biol 2011, 60:291-302.
  • [70]Skinner JD, Chimimba CT: The Mammals of the Southern African Subregion. 3rd edition. Cambridge University Press, Cambridge, UK; 2005.
  • [71]Monadjem A: Mus setzeri Setzer’s Pygmy Mouse. In Mammals of Africa, Volume III Rodents, hares and rabbits. Edited by Happold DCD. Bloomsbury Publishing, London and New York; 2013:493-494.
  • [72]Vermeiren L, Verheyen WN: Additional data on Mus setzeri Petter (Mammalia, Muridae). Annales Musée Royal de l'Afrique Centrale, ser 8 (Sciences Zoologiques) 1983, 237:137-141.
  • [73]Missoup AD, Nicolas V, Wendelen W, Keming E, Bilong Bilong CF, Couloux A, Atanga E, Hutterer R, Denys C: Systematics and diversification of Praomys species (Rodentia: Muridae) endemic to the Cameroon Volcanic Line (West Central Africa). Zool Scr 2012, 41:327-345.
  • [74]Demos TC, Agwanda B, Hickerson MJ: Integrative taxonomy within the Hylomyscus denniae complex (Rodentia: Muridae) and a new species from Kenya. J Mamm 2014, 95(1):1-15.
  • [75]Verheyen WN, Hulselmans JLJ, Dierckx T, Mulungu L, Verheyen E, Corti M, Kerbis JP, Leirs H: Craniometric,cytogenetic and genetic characterization of the Kilimanjaro Lophuromys aquilus True 1892 population, its implications for the taxonomy of the Lophuromys flavopunctatus species complex and description of five new taxa. (Rodentia-Muridae-Africa). Bulletin de l’Insitut Royal des Sciences Naturelles de Belgique, Biologie 2007, 77:23-75.
  • [76]Colangelo P, Verheyen E, Leirs H, Tatard C, Denys C, Dobigny G, Duplantier JM, Brouat C, Granjon L, Lecompte E: A mitochondrial phylogeographic scenario for the most widespread African rodent, Mastomys natalensis. Biol J Linn Soc 2013, 108(4):901-916.
  • [77]Potts R: Hominin evolution in settings of strong environmental variability. Quat Sci Rev 2013, 73:1-13.
  • [78]Alvarado-Serrano DF, Knowles LL: Ecological niche models in phylogeographic studies: applications, advances and precautions. Mol Ecol Resour 2014, 14:233-248.
  • [79]Šmíd J, Carranza S, Kratochvíl L, Gvoždík V, Nasher AK, Moravec J: Out of Arabia: A complex biogeographic history of multiple vicariance and dispersal events in the gecko genus Hemidactylus (Reptilia: Gekkonidae). PLoS One 2013, 8(5):e64018.
  • [80]Portik DM, Papenfuss TJ: Monitors cross the Red Sea: The biogeographic history of Varanus yemenensis. Mol Phylogenet Evol 2012, 62:561-565.
  • [81]Winney BJ, Hammond RL, Macasero W, Flores B, Boug A, Biquand V, Biquand S, Bruford MW: Crossing the Red Sea: phylogeography of the hamadryas baboon, Papio hamadryas hamadryas. Mol Ecol 2004, 13:2819-2927.
  • [82]Bosworth W, Huchon P, McClay K: The red sea and gulf of aden basins. J Afr Earth Sci 2005, 43:334-378.
  • [83]Fernandes CA, Rohling EJ, Siddall M: Absence of post-Miocene Red Sea land bridges: biogeographic implications. J Biogeogr 2006, 33:961-966.
  • [84]Catzeflis FM, Denys C: The African Nannomys (Muridae): an early offshoot from the Mus lineage - Evidence from scnDNA hybridization experiments and compared morphology. Isr J Zool 1992, 38:219-231.
  • [85]Denys C: Of mice and men: Evolution in East and South Africa during Plio-Pleistocene times. In African Biogeography, Climate Change, and Human Evolution. Edited by Bromage TG, Schrenk F. Oxford University Press, Oxford; 1999:226-252.
  • [86]Trauth MH, Maslin MA, Deino AL, Strecker MR, Bergner AGN, Dühnforth M: High- and low-latitude forcing of Plio-Pleistocene East African climate and human evolution. J Hum Evol 2007, 53:475-486.
  • [87]de Menocal PB: African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet Sc Lett 2004, 220:3-24.
  • [88]Zachos J, Pagani M, Sloan L, Thomas E, Billups K: Trends, rhythms, and abberations in global climate 65 Ma to present. Science 2001, 292:686-693.
  • [89]Schultz S, Maslin M: Early human speciation, brain expansion and dispersal influenced by African climate pulses. PLoS One 2013, 8(10):e76750.
  • [90]Veyrunes F, Catalan J, Tatard C, Cellier-Holzem E, Watson J, Chevret P, Robinson TJ, Britton-Davidian J: Mitochondrial and chromosomal insights into karyotypic evolution of the pygmy mouse, Mus minutoides, in South Africa. Chromosome Res 2010, 18:563-574.
  • [91]Veyrunes F, Perez J, Paintsil SNC, Fichet-Calvet E, Britton-Davidian J: Insights into the evolutionary history of the X-linked sex reversal mutation in Mus minutoides: clues from sequence analyses of the Y-linked Sry gene. Sex Dev 2013, 7(5):244-252.
  • [92]Matthey R: Nouvelles contributions à la cytogénétique des Mus africaines du sous-genre Leggada. Experientia 1966, 22(6):400-401.
  • [93]Nichol ST, Arikawa J, Kawaoka Y: Emerging viral diseases. Proc Natl Acad Sci U S A 2000, 2000(97):12411-12412.
  • [94]Günther S, Lenz O: Lassa virus. Crit Rev Clin Lab Sci 2004, 41:339-390.
  • [95]Hugot JP, Gonzales JP, Denys C: Evolution of the Old World Arenaviridae and their rodent hosts: generalized host-transfer or association by descent? Infect Genet Evol 2001, 1:13-20.
  文献评价指标  
  下载次数:38次 浏览次数:19次