期刊论文详细信息
BMC Infectious Diseases
Epidemic of Klebsiella pneumoniae ST11 Clone Coproducing KPC-2 and 16S rRNA Methylase RmtB in a Chinese University Hospital
Lan-Juan Li2  Ji-Fang Sheng2  Zhong-Kang Ji2  Hai-Feng Miao2  Fei-Shu Hu2  Sheng Bi2  Mei Deng2  Zi-Ke Sheng1  Jun-Jie Li2 
[1] Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China;State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People’s Republic of China
关键词: Epidemic;    rmtB;    KPC;    Aminoglycoside;    Carbapenem;   
Others  :  1158653
DOI  :  10.1186/1471-2334-12-373
 received in 2012-08-30, accepted in 2012-12-19,  发布年份 2012
PDF
【 摘 要 】

Background

Emergence of rmtB-positive Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae (KPC-KP) poses a great threat to antimicrobial treatment options.

Methods

From January 2010 to December 2010, non-duplicate KPC-KP isolates from our hospital were screened for rmtB and multiple other resistance determinants with PCR. Subsequent studies included MIC determination, PFGE, and multilocus sequence typing. Records from patients with KPC-KP isolated were retrospectively reviewed. Comparisons of molecular and clinical characteristics between rmtB-positive and rmtB–negative isolates were systematically performed, as well as the environmental colonization study in ICU wards.

Results

A total of 84 KPC-KP strains were collected, including 48 rmtB-positive KPC-KP (RPKP) and 36 rmtB-negative KPC-KP (RNKP) isolates. All KPC-KP isolates were multidrug resistant, with colistin and tigecycline being the most active agents. Compared with RNKP, RPKP displayed a much severer resistance phenotype. Susceptibility rates for amikacin (0% for RPKP versus 88.9% for RNKP, p < 0.01), fosfomycin (8.5% for RPKP versus 88.9% for RNKP, p < 0.01), and minocycline (6.7% for RPKP versus 52.8% for RNKP, p < 0.01), were all significantly lower in RPKP strains. Isolates belonging to PFGE pulsetype A and sequence type 11 were predominant in both groups, including 39 (81.3%) RPKP and 22 (61.1%) RNKP isolates. Nevertheless, RNKP showed more complex genetic backgrounds compared with RPKP. Diverse clinical characteristics were found in both cohorts, however, no significant differences were observed between RPKP and RNKP patients.

Conclusions

RPKP strains have spread widely and gradually replaced RNKP in our hospital. They seemed to show much severer resistance phenotypes compared with RNKP and had a bigger dissemination potential. Prudent use of available active agents combined with good control practices is therefore mandatory.

【 授权许可】

   
2012 Li et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150408022951770.pdf 433KB PDF download
Figure 2. 72KB Image download
Figure 1. 49KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Xiao YH, Giske CG, Wei ZQ, Shen P, Heddini A, Li LJ: Epidemiology and characteristics of antimicrobial resistance in China. Drug Resist Updat 2011, 14(4–5):236-250.
  • [2]Chen S, Hu F, Xu X, Liu Y, Wu W, Zhu D, Wang H: High prevalence of KPC-2-type carbapenemase coupled with CTX-M-type extended-spectrum beta-lactamases in carbapenem-resistant Klebsiella pneumoniae in a teaching hospital in China. Antimicrob Agents Chemother 2011, 55(5):2493-2494.
  • [3]Cai JC, Zhou HW, Zhang R, Chen GX: Emergence of Serratia marcescens, Klebsiella pneumoniae, and Escherichia coli Isolates possessing the plasmid-mediated carbapenem-hydrolyzing beta-lactamase KPC-2 in intensive care units of a Chinese hospital. Antimicrob Agents Chemother 2008, 52(6):2014-2018.
  • [4]Qi Y, Wei Z, Ji S, Du X, Shen P, Yu Y: ST11, the dominant clone of KPC-producing Klebsiella pneumoniae in China. J Antimicrob Chemother 2011, 66(2):307-312.
  • [5]Andrade LN, Curiao T, Ferreira JC, Longo JM, Climaco EC, Martinez R, Bellissimo-Rodrigues F, Basile-Filho A, Evaristo MA, Del Peloso PF, et al.: Dissemination of blaKPC-2 by the spread of Klebsiella pneumoniae clonal complex 258 clones (ST258, ST11, ST437) and plasmids (IncFII, IncN, IncL/M) among Enterobacteriaceae species in Brazil. Antimicrob Agents Chemother 2011, 55(7):3579-3583.
  • [6]Giakkoupi P, Papagiannitsis CC, Miriagou V, Pappa O, Polemis M, Tryfinopoulou K, Tzouvelekis LS, Vatopoulos AC: An update of the evolving epidemic of blaKPC-2-carrying Klebsiella pneumoniae in Greece (2009–10). J Antimicrob Chemother 2011, 66(7):1510-1513.
  • [7]Sheng JF, Li JJ, Tu S, Sheng ZK, Bi S, Zhu MH, Shen XM, Li LJ: blaKPC and rmtB on a single plasmid in Enterobacter amnigenus and Klebsiella pneumoniae isolates from the same patient. Eur J Clin Microbiol Infect Dis 2012, 31(7):1585-1591.
  • [8]Wu Q, Zhang Y, Han L, Sun J, Ni Y: Plasmid-mediated 16S rRNA methylases in aminoglycoside-resistant Enterobacteriaceae isolates in Shanghai, China. Antimicrob Agents Chemother 2009, 53(1):271-272.
  • [9]Zacharczuk K, Piekarska K, Szych J, Zawidzka E, Sulikowska A, Wardak S, Jagielski M, Gierczynski R: Emergence of Klebsiella pneumoniae coproducing KPC-2 and 16S rRNA methylase ArmA in Poland. Antimicrob Agents Chemother 2011, 55(1):443-446.
  • [10]Wei ZQ, Du XX, Yu YS, Shen P, Chen YG, Li LJ: Plasmid-mediated KPC-2 in a Klebsiella pneumoniae isolate from China. Antimicrob Agents Chemother 2007, 51(2):763-765.
  • [11]Zhou Y, Yu H, Guo Q, Xu X, Ye X, Wu S, Guo Y, Wang M: Distribution of 16S rRNA methylases among different species of Gram-negative bacilli with high-level resistance to aminoglycosides. Eur J Clin Microbiol Infect Dis 2010, 29(11):1349-1353.
  • [12]Horan TC, Andrus M, Dudeck MA: CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 2008, 36(5):309-332.
  • [13]Clinical and Loboratory Standards Institute: Performance Standards for Antimicrobial Susceptibility Testing: 20th informational supplement, CLSI document M100-S20. Wayne: CLSI; 2010.
  • [14]Gales AC, Reis AO, Jones RN: Contemporary assessment of antimicrobial susceptibility testing methods for polymyxin B and colistin: review of available interpretative criteria and quality control guidelines. J Clin Microbiol 2001, 39(1):183-190.
  • [15]Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B: Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995, 33(9):2233-2239.
  • [16]Luo Y, Yang J, Zhang Y, Ye L, Wang L, Guo L: Prevalence of beta-lactamases and 16S rRNA methylase genes amongst clinical Klebsiella pneumoniae isolates carrying plasmid-mediated quinolone resistance determinants. Int J Antimicrob Agents 2011, 37(4):352-355.
  • [17]Peleg AY, Hooper DC: Hospital-acquired infections due to gram-negative bacteria. N Engl J Med 2010, 362(19):1804-1813.
  • [18]Bogdanovich T, Adams-Haduch JM, Tian GB, Nguyen MH, Kwak EJ, Muto CA, Doi Y: Colistin-Resistant, Klebsiella pneumoniae Carbapenemase (KPC)-Producing Klebsiella pneumoniae Belonging to the International Epidemic Clone ST258. Clin Infect Dis 2011, 53(4):373-376.
  • [19]Daly MW, Riddle DJ, Ledeboer NA, Dunne WM, Ritchie DJ: Tigecycline for treatment of pneumonia and empyema caused by carbapenemase-producing Klebsiella pneumoniae. Pharmacotherapy 2007, 27(7):1052-1057.
  • [20]Elemam A, Rahimian J, Mandell W: Infection with panresistant Klebsiella pneumoniae: a report of 2 cases and a brief review of the literature. Clin Infect Dis 2009, 49(2):271-274.
  • [21]Souli M, Galani I, Antoniadou A, Papadomichelakis E, Poulakou G, Panagea T, Vourli S, Zerva L, Armaganidis A, Kanellakopoulou K, et al.: An outbreak of infection due to beta-Lactamase Klebsiella pneumoniae Carbapenemase 2-producing K. pneumoniae in a Greek University Hospital: molecular characterization, epidemiology, and outcomes. Clin Infect Dis 2010, 50(3):364-373.
  • [22]Samuelsen O, Naseer U, Tofteland S, Skutlaberg DH, Onken A, Hjetland R, Sundsfjord A, Giske CG: Emergence of clonally related Klebsiella pneumoniae isolates of sequence type 258 producing plasmid-mediated KPC carbapenemase in Norway and Sweden. J Antimicrob Chemother 2009, 63(4):654-658.
  • [23]Satlin MJ, Kubin CJ, Blumenthal JS, Cohen AB, Furuya EY, Wilson SJ, Jenkins SG, Calfee DP: Comparative effectiveness of aminoglycosides, polymyxin B, and tigecycline for clearance of carbapenem-resistant Klebsiella pneumoniae from urine. Antimicrob Agents Chemother 2011, 55(12):5893-5899.
  • [24]Michalopoulos A, Virtzili S, Rafailidis P, Chalevelakis G, Damala M, Falagas ME: Intravenous fosfomycin for the treatment of nosocomial infections caused by carbapenem-resistant Klebsiella pneumoniae in critically ill patients: a prospective evaluation. Clin Microbiol Infect 2010, 16(2):184-186.
  • [25]Balm MN, Ngan G, Jureen R, Lin RT, Teo J: Molecular characterization of newly emerged blaKPC-2-producing Klebsiella pneumoniae in Singapore. J Clin Microbiol 2012, 50(2):475-476.
  • [26]Lee CM, Liao CH, Lee WS, Liu YC, Mu JJ, Lee MC, Hsueh PR: Outbreak of Klebsiella pneumoniae Carbapenemase-2- producing K. pneumoniae Sequence Type 11 in Taiwan, 2011. Antimicrob Agents Chemother 2012, 56(10):5016-5022.
  • [27]Mezzatesta ML, Gona F, Caio C, Petrolito V, Sciortino D, Sciacca A, Santangelo C, Stefani S: Outbreak of KPC-3-producing, and colistin-resistant, Klebsiella pneumoniae infections in two Sicilian hospitals. Clin Microbiol Infect 2011, 17(9):1444-1447.
  • [28]Zarkotou O, Pournaras S, Voulgari E, Chrysos G, Prekates A, Voutsinas D, Themeli-Digalaki K, Tsakris A: Risk factors and outcomes associated with acquisition of colistin-resistant KPC-producing Klebsiella pneumoniae: a matched case–control study. J Clin Microbiol 2010, 48(6):2271-2274.
  • [29]Zarkotou O, Pournaras S, Tselioti P, Dragoumanos V, Pitiriga V, Ranellou K, Prekates A, Themeli-Digalaki K, Tsakris A: Predictors of mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin Microbiol Infect 2011, 17(12):1798-1803.
  • [30]Drusano GL, Louie A: Optimization of aminoglycoside therapy. Antimicrob Agents Chemother 2011, 55(6):2528-2531.
  文献评价指标  
  下载次数:18次 浏览次数:25次