期刊论文详细信息
BMC Microbiology
Lactobacillus reuteri I5007 modulates tight junction protein expression in IPEC-J2 cells with LPS stimulation and in newborn piglets under normal conditions
Shiyan Qiao1  Hong Liu1  Chengli Hou1  Xiangfang Zeng1  Aina Wang2  Fengjuan Yang1 
[1] State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China;Weifang Business Vocational College, Zhucheng 262234, China
关键词: Lipopolysaccharides;    IPEC-J2;    Tight junction;    Newborn piglets;    Lactobacillus;   
Others  :  1137430
DOI  :  10.1186/s12866-015-0372-1
 received in 2014-08-14, accepted in 2015-02-04,  发布年份 2015
PDF
【 摘 要 】

Background

Tight junctions (TJs) maintain the intestinal mucosal barrier, dysfunction of which plays a vital role in the pathophysiology of a variety of gastrointestinal disorders. Previously, we have shown that L. reuteri I5007 maintained the gut epithelial barrier in newborn piglets. Here we aimed to decipher the influence of L. reuteri I5007 on tight junction (TJ) protein expression both in vivo and in vitro.

Results

We found that L. reuteri I5007 significantly increased the protein abundance of intestinal epithelial claudin-1, occludin and zonula occluden-1 (ZO-1) in newborn piglets (orally administrated with 6 × 109 CFU of L. reuteri I5007 daily for 14 days). In vitro, treatment with L. reuteri I5007 alone maintained the transepithelial electrical resistance (TEER) of IPEC-J2 cells with time. In addition, IPEC-J2 cells were stimulated with 1 μg/mL lipopolysaccharide (LPS) for 1, 4, 8, 12 or 24 h, following pre-treatment with L. reuteri I5007 or its culture supernatant for 2 h. The results showed that LPS time-dependently induced (significantly after 4 or 8 h) the expression of TNF-α and IL-6, and decreased TJ proteins, which was reversed by pre-treatment of L. reuteri I5007 or its culture supernatant.

Conclusions

L. reuteri I5007 had beneficial effects on the expression of TJ proteins in newborn piglets and the in-vitro results showed this strain had a positive effect on TEER of cells and inhibited the reduction of TJ proteins expression induced by LPS. These findings indicated L. reuteri I5007 may have potential roles in protection TJ proteins in TJ-deficient conditions.

【 授权许可】

   
2015 Yang et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150317045938603.pdf 1528KB PDF download
Figure 5. 111KB Image download
Figure 4. 65KB Image download
Figure 3. 34KB Image download
Figure 2. 9KB Image download
Figure 1. 26KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Maragkoudakis PA, Chingwaru W, Gradisnik L, Tsakalidou E, Cencic A: Lactic acid bacteria efficiently protect human and animal intestinal epithelial and immune cells from enteric virus infection. Int J Food Microbiol 2010, 141(Suppl 1):91-7.
  • [2]Clayburgh DR, Shen L, Turner JR: A porous defense: the leaky epithelial barrier in intestinal disease. Lab Invest 2004, 84(3):282-91.
  • [3]Anderson JM, Van Itallie CM, Fanning AS: Setting up a selective barrier at the apical junction complex. Curr Opin Cell Biol 2004, 16(2):140-5.
  • [4]Tsukita SH, Furuse M, Itoh M: Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2001, 2(4):285-93.
  • [5]Anderson JM: Molecular structure of tight junctions and their role in epithelial transport. News Physiol Sci 2001, 16:126-30.
  • [6]Groschwitz KR, Hogan SP: Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 2009, 124(1):3-20.
  • [7]Anderson JM, Stevenson BR, Jesaitis LA, Goodenough DA, Mooseker MS: Characterization of ZO-1, a protein component of the tight junction from mouse liver and Madin-Darby canine kidney cells. J Cell Biol 1988, 106(4):1141-9.
  • [8]Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S: Claudin-1 and -2: Novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 1998, 141(7):1539-50.
  • [9]Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S, et al.: Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol 1994, 127(6 Pt 1):1617-26.
  • [10]Hu CH, Xiao K, Luan ZS, Song J: Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. J Anim Sci 2013, 91(3):1094-101.
  • [11]FAO/WHO. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria, Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria, Córdoba, Argentina. 2001 [http:www.who.int/foodsafety/publications/fs_management/en/probiotics.pdf]
  • [12]Stella AV, Paratte R, Valnegri L, Cigalino G, Soncini G, Chevaux E, et al.: Effect of administration of live Saccharomyces cerevisiae on milk production, milk composition, blood metabolites, and faecal flora in early lactating dairy goats. Small Ruminant Res 2007, 67(1):7-13.
  • [13]Wang AN, Cai CJ, Zeng XF, Zhang FR, Zhang GL, Thacker PA, et al.: Dietary supplementation with Lactobacillus fermentum I5007 improves the anti-oxidative activity of weanling piglets challenged with diquat. J Appl Microbiol 2013, 114(6):1582-91.
  • [14]Vizoso Pinto MG, Rodriguez Gómez M, Seifert S, Watzl B, Holzapfel WH, Franz CM: Lactobacilli stimulate the innate immune response and modulate the TLR expression of HT29 intestinal epithelial cells in vitro. Int J Food Microbiol 2009, 133(1–2):86-93.
  • [15]Liu Y, Fatheree NY, Mangalat N, Rhoads JM: Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 2010, 299(5):G1087-96.
  • [16]Meijer BJ, Dielman LA: Probiotics in the treatment of human inflammatory bowel diseases: Update 2011. J Clin Gastroenterol 2011, 45:S139-44.
  • [17]Ukena SN, Singh A, Dringenberg U, Engelhardt R, Seidler U, Hansen W, et al.: Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS One 2007, 2(12):e1308.
  • [18]Pagnini C, Saeed R, Bamias G, Arseneau KO, Pizarro TT, Cominelli F: Probiotics promote gut health through stimulation of epithelial innate immunity. Proc Natl Acad Sci 2010, 107(1):454-9.
  • [19]Chow J: Probiotics and prebiotics: a brief overview. J Ren Nutr 2002, 12(2):76-86.
  • [20]Shah NP: Functional cultures and health benefits. Int Dairy J 2007, 17(11):1262-77.
  • [21]Corridoni D, Pastorelli L, Mattioli B, Locovei S, Ishikawa D, Arseneau KO, et al.: Probiotic bacteria regulate intestinal epithelial permeability in experimental ileitis by a TNF-dependent mechanism. PLoS One 2012, 7(7):e42067.
  • [22]Miyauchi E, O'Callaghan J, Butto LF, Hurley G, Melgar S, Tanabe S, et al.: Mechanism of protection of transepithelial barrier function by Lactobacillus salivarius: strain dependence and attenuation by bacteriocin production. Am J Physiol Gastrointest Liver Physiol 2012, 303(9):G1029-41.
  • [23]Seth A, Yan F, Polk DB, Rao RK: Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 2008, 294(4):G1060-9.
  • [24]Shornikova AV, Casas IA, Mykkanen H, Salo E, Vesikari T: Bacteriotherapy with Lactobacillus reuteri in rotavirus gastroenteritis. Pediatr Infect Dis J 1997, 16(12):1103-7.
  • [25]Dicksved J, Schreiber O, Willing B, Petersson J, Rang S, Phillipson M, et al.: Lactobacillus reuteri maintains a functional mucosal barrier during DSS treatment despite mucus layer dysfunction. PLoS One 2012, 7(9):e46399.
  • [26]Huang CH, Qiao SY, Li DF, Piao XS, Ren JP: Effects of Lactobacilli on the performance, diarrhea incidence, VFA concentration and gastrointestinal microbial flora of weaning pigs. Asian-Aust J Anim Sci 2004, 17(3):401-9.
  • [27]Li XJ, Yue LY, Guan XF, Qiao SY: The adhesion of putative probiotic lactobacilli to cultured epithelial cells and porcine intestinal mucus. J Appl Microbiol 2008, 104(4):1082-91.
  • [28]Liu H, Zhang J, Zhang SH, Yang FJ, Thacker PA, Zhang GL, et al.: Oral administration of Lactobacillus fermentum I5007 favors intestinal development and alters the intestinal microbiota in formula-fed piglets. J Agric Food Chem 2014, 62(4):860-6.
  • [29]Wang AN, Yi XW, Yu HF, Dong B, Qiao SY: Free radical scavenging activity of Lactobacillus fermentum in vitro and its antioxidative effect on growing-finishing pigs. J Appl Microbiol 2009, 107(4):1140-8.
  • [30]Yu HF, Wang AN, Li XJ, Qiao SY: Effect of viable Lactobacillus fermentum on the growth performance, nutrinent digestibility and immunity of weaned pigs. J Anim Feed Sci 2008, 17(1):61-9.
  • [31]Hou C, Wang Q, Zeng X, Yang F, Zhang J, Liu H, et al.: Complete genome sequence of Lactobacillus reuteri I5007, a probiotic strain isolated from healthy piglet. J Biotechnol 2014, 179:63-4.
  • [32]Resta-Lenert S, Barrett KE: Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut 2003, 52(7):988-97.
  • [33]Jijon H, Backer J, Diaz H, Yeung H, Thiel D, McKaigney C, et al.: DNA from probiotic bacteria modulates murine and human epithelial and immune function. Gastroenterology 2004, 126(5):1358-73.
  • [34]Karczewski J, Troost FJ, Konings I, Dekker J, Kleerebezem M, Brummer RJ, et al.: Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am J Physiol Gastrointest Liver Physiol 2010, 298(6):G851-9.
  • [35]Zareie M, Johnson-Henry K, Jury J, Yang P, Nga B, McKay DM, et al.: Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress. Gut 2006, 55(11):1553-60.
  • [36]Patel RM, Myers LS, Kurundkar AR, Maheshwari A, Nusrat A, Lin PW: Probiotic bacteria induce maturation of intestinal claudin 3 expression and barrier function. Am J Pathol 2012, 180(2):626-35.
  • [37]Johnson GB, Brunn GJ, Samstein B, Platt JL: New insight into the pathogenesis of sepsis and the sepsis syndrome. Surgery 2005, 137(4):393-5.
  • [38]Lin YP, Thibodeaux CH, Pena JA, Ferry GD, Versalovic J: Probiotic Lactobacillus reuteri suppress proinflammatory cytokines via c-Jun. Inflamm Bowel Dis 2008, 14(8):1068-83.
  • [39]Jones SE, Versalovic J: Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol 2009, 9:35. BioMed Central Full Text
  • [40]Rachmilewitz D, Katakura K, Karmeli F, Hayashi T, Reinus C, Rudensky B, et al.: Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 2004, 126(2):520-8.
  • [41]Furuse M: Molecular basis of the core structure of tight junctions. Cold Spring Harb Perspect Biol 2010, 2(1):a2907.
  • [42]Yi X, Wang Y, Yu FS: Corneal epithelial tight junctions and their response to lipopolysaccharide challenge. Invest Ophthalmol Vis Sci 2000, 41(13):4093-100.
  • [43]Xie W, Wang HQ, Wang L, Yao CY, Yuan RX, Wu QP: Resolvin D1 reduces deterioration of tight junction proteins by upregulating HO-1 in LPS-induced mice. Lab Invest 2013, 93(9):991-1000.
  • [44]Mennigen R, Nolte K, Rijcken E, Utech M, Loeffler B, Senninger N, et al.: Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol 2009, 296(5):G1140-9.
  • [45]Khailova L, Dvorak K, Arganbright KM, Halpern MD, Kinouchi T, Yajima M, et al.: Bifidobacterium bifidum improves intestinal integrity in a rat model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2009, 297(5):G940-9.
  • [46]Sultana R, McBain AJ, O'Neill CA: Strain-dependent augmentation of tight-junction barrier function in human primary epidermal keratinocytes by Lactobacillus and Bifidobacterium lysates. Appl Environ Microbiol 2013, 79(16):4887-94.
  • [47]Kaper JB, Sperandio V: Bacterial cell-to-cell signaling in the gastrointestinal tract. Infect Immun 2005, 73(6):3197-209.
  • [48]Hidalgo IJ, Raub TJ, Borchardt RT: Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 1989, 96(3):736-49.
  • [49]Wilson G, Hassan IF, Dix CJ, Williamson R, Shah R, Mackey M, et al.: Transport and permeability properties of human Caco-2 cells: An in vitro model of the intestinal epithelial cell barrier. J Control Release 1990, 11:25-40.
  • [50]Sheth P, Delos SN, Seth A, LaRusso NF, Rao RK: Lipopolysaccharide disrupts tight junctions in cholangiocyte monolayers by a c-Src-, TLR4-, and LBP-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 2007, 293(1):G308-18.
  • [51]Yeung CY, Chiang CJ, Chan WT, Jiang CB, Cheng ML, Liu HL, et al.: In vitro prevention of Salmonella lipopolysaccharide-induced damages in epithelial barrier function by various Lactobacillus strains. Gastroenterol Res Pract 2013, 2013:973209.
  • [52]Yuki T, Yoshida H, Akazawa Y, Komiya A, Sugiyama Y, Inoue S: Activation of TLR2 enhances tight junction barrier in epidermal keratinocytes. J Immunol 2011, 187(6):3230-7.
  • [53]Ewaschuk JB, Diaz H, Meddings L, Diederichs B, Dmytrash A, Backer J, et al.: Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am J Physiol Gastrointest Liver Physiol 2008, 295(5):G1025-34.
  文献评价指标  
  下载次数:55次 浏览次数:16次