期刊论文详细信息
BMC Genomics
An integrated platform for bovine DNA methylome analysis suitable for small samples
Claude Robert1  Marc-André Sirard1  Jason R Grant2  Éric Fournier1  Dominic Gagné1  Alan M O’Doherty3  Habib A Shojaei Saadi1 
[1] Laboratory of Functional Genomics of Early Embryonic Development, Institut des nutraceutiques et des aliments fonctionnels, Faculté des sciences de l’agriculture et de l’alimentation, Pavillon des services, Université Laval, Québec G1V 0A6, Canada;Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;School of Agriculture, Food Science & Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
关键词: Epigenome-wide association study;    Repetitive elements;    CpG enrichment;    Analysis pipeline;    Methylome and transcriptome parallel analysis;    Bovine embryo;    DNA methylation;    Epigenome;   
Others  :  1216640
DOI  :  10.1186/1471-2164-15-451
 received in 2014-02-17, accepted in 2014-05-28,  发布年份 2014
PDF
【 摘 要 】

Background

Oocytes and early embryos contain minute amounts of DNA, RNA and proteins, making the study of early mammalian development highly challenging. The study of the embryo epigenome, in particular the DNA methylome, has been made accessible thanks to the possibility of amplifying specific sequences according to their initial methylation status. This paper describes a novel platform dedicated to the genome-wide study of bovine DNA methylation, including a complete pipeline for data analysis and visualization. The platform allows processing and integrating of DNA methylome and transcriptome data from the same sample. Procedures were optimized for genome-wide analysis of 10 ng of DNA (10 bovine blastocysts). Bovine sperm and blastocysts were compared as a test of platform capability.

Results

The hypermethylation of bovine sperm DNA compared to the embryo genome was confirmed. Differentially methylated regions were distributed across various classes of bovine sperm genomic feature including primarily promoter, intronic and exonic regions, non-CpG-island regions (shore, shelf and open-sea) and CpG islands with low-to-intermediate CpG density. The blastocyst genome bore more methylation marks than sperm DNA only in CpG islands with high CpG density. Long-terminal-repeat retrotransposons (LTR), LINE and SINE were more methylated in sperm DNA, as were low-complexity repetitive elements in blastocysts.

Conclusions

This is the first early embryo compatible genome-wide epigenetics platform for bovine. Such platforms should improve the study of the potential epigenetic risks of assisted reproductive technologies (ART), the establishment sequence of embryonic cell lines and potential deviations in both gene expression and DNA methylation capable of having long-term impact.

【 授权许可】

   
2014 Shojaei Saadi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150701202503470.pdf 4595KB PDF download
Figure 11. 86KB Image download
Figure 2. 92KB Image download
Figure 9. 164KB Image download
Figure 8. 95KB Image download
Figure 7. 125KB Image download
Figure 6. 97KB Image download
Figure 5. 51KB Image download
Figure 4. 115KB Image download
Figure 3. 99KB Image download
Figure 2. 136KB Image download
Figure 1. 108KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 2.

Figure 11.

【 参考文献 】
  • [1]Robert C, Nieminen J, Dufort I, Gagné D, Grant J, Cagnone G, Plourde D, Nivet A-L, Fournier É, Paquet É, Blazejczyk M, Rigault P, Juge N, Sirard MA: Combining resources to obtain a comprehensive survey of the bovine embryo transcriptome through deep sequencing and microarrays. Mol Reprod Dev 2011, 78(9):651-664.
  • [2]Tsoi S, Zhou C, Grant J, Pasternak J, Dobrinsky J, Rigault P, Nieminen J, Sirard M-A, Robert C, Foxcroft G, Dyck MK: Development of a porcine (Sus scofa) embryo-specific microarray: array annotation and validation. BMC Genomics 2012, 13(1):370.
  • [3]Gad A, Hoelker M, Besenfelder U, Havlicek V, Cinar U, Rings F, Held E, Dufort I, Sirard MA, Schellander K, Tesfaye D: Molecular mechanisms and pathways involved in bovine embryonic genome activation and their regulation by alternative in vivo and in vitro culture conditions. Biol Reprod 2012, 87(4):100.
  • [4]Cagnone GLM, Sirard M-A: Transcriptomic signature to oxidative stress exposure at the time of embryonic genome activation in bovine blastocysts. Mol Reprod Dev 2013, 80(4):297-314.
  • [5]Cagnone GL, Dufort I, Vigneault C, Sirard MA: Differential gene expression profile in bovine blastocysts resulting from hyperglycemia exposure during early cleavage stages. Biol Reprod 2012, 86(2):50.
  • [6]Zhang P, Zucchelli M, Bruce S, Hambiliki F, Stavreus-Evers A, Levkov L, Skottman H, Kerkelä E, Kere J, Hovatta O: Transcriptome profiling of human pre-implantation development. PLoS One 2009, 4(11):e7844.
  • [7]Hamatani T, Carter M, Sharov A, Ko M: Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 2004, 6(1):117-131.
  • [8]Léandri R, Archilla C, Bui L, Peynot N, Liu Z, Cabau C, Chastellier A, Renard J, Duranthon V: Revealing the dynamics of gene expression during embryonic genome activation and first differentiation in the rabbit embryo with a dedicated array screening. Physiol Genomics 2009, 36(2):98-113.
  • [9]Szyf M: The early life environment and the epigenome. Biochim Biophys Acta 2009, 1790(9):878-885.
  • [10]Guerrero-Bosagna C, Skinner M: Environmentally induced epigenetic transgenerational inheritance of phenotype and disease. Mol Cell Endocrinol 2011, 354((1-2)):3-8.
  • [11]Suzuki MM, Bird A: DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 2008, 9(6):465-476.
  • [12]Bernstein B, Meissner A, Lander E: The mammalian epigenome. Cell 2007, 128(4):669-681.
  • [13]Baccarelli A, Rienstra M, Benjamin EJ: Cardiovascular epigenetics: basic concepts and results from animal and human studies. Circ Cardiovasc Genet 2010, 3(6):567-573.
  • [14]Shi L, Wu J: Epigenetic regulation in mammalian preimplantation embryo development. Reprod Biol Endocrinol 2009, 7(1):59.
  • [15]Bird A: DNA methylation patterns and epigenetic memory. Genes Dev 2002, 16(1):6-21.
  • [16]Raynal N, Si J, Taby R, Gharibyan V, Ahmed S, Jelinek J, Estécio M, Issa J-PJ: DNA methylation does not stably lock gene expression but instead serves as a molecular mark for gene silencing memory. Cancer Res 2012, 72(5):1170-1181.
  • [17]Talens RP, Boomsma DI, Tobi EW, Kremer D, Jukema JW, Willemsen G, Putter H, Slagboom PE, Heijmans BT: Variation, patterns, and temporal stability of DNA methylation: considerations for epigenetic epidemiology. FASEB J 2010, 24(9):3135-3144.
  • [18]Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suñer D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M: Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 2005, 102(30):10604-10609.
  • [19]Wu H, Zhang Y: Early embryos reprogram DNA methylation in two steps. Cell Stem Cell 2012, 10(5):487-489.
  • [20]Seisenberger S, Peat JR, Reik W: Conceptual links between DNA methylation reprogramming in the early embryo and primordial germ cells. Curr Opin Cell Biol 2013, 25(3):281-288.
  • [21]Reik W, Dean W, Walter J: Epigenetic reprogramming in mammalian development. Science 2001, 293(5532):1089-1093.
  • [22]Morgan HD, Santos F, Green K, Dean W, Reik W: Epigenetic reprogramming in mammals. Hum Mol Genet 2005, 14(suppl 1):R47-R58.
  • [23]Seisenberger S, Peat JR, Hore TA, Santos F, Dean W, Reik W: Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc B Biol Sci 2013, 368(1609):20110330.
  • [24]Santos F, Hendrich B, Reik W, Dean W: Dynamic Reprogramming of DNA Methylation in the Early Mouse Embryo. Dev Biol 2002, 241(1):172-182.
  • [25]van Montfoort APA, Hanssen LLP, de Sutter P, Viville S, Geraedts JPM, de Boer P: Assisted reproduction treatment and epigenetic inheritance. Hum Reprod Update 2012, 18(2):171-197.
  • [26]McGraw S, Shojaei Saadi HA, Robert C: Meeting the methodological challenges in molecular mapping of the embryonic epigenome. Mol Hum Reprod 2013, 19(12):809-827.
  • [27]de Montera B, Fournier E, Shojaei Saadi HA, Gagne D, Laflamme I, Blondin P, Sirard MA, Robert C: Combined methylation mapping of 5mC and 5hmC during early embryonic stages in bovine. BMC Genomics 2013, 14:406.
  • [28]Irizarry RA, Ladd-Acosta C, Carvalho B, Wu H, Brandenburg SA, Jeddeloh JA, Wen B, Feinberg AP: Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Res 2008, 18(5):780-790.
  • [29]Slomko H, Heo HJ, Einstein FH: Minireview: epigenetics of obesity and diabetes in humans. Endocrinology 2012, 153(3):1025-1030.
  • [30]Youngson NA, Morris MJ: What obesity research tells us about epigenetic mechanisms. Philos Trans R Soc B Biol Sci 2013, 368(1609):20110337.
  • [31]Saab BJ, Mansuy IM: Neurobiological disease etiology and inheritance: an epigenetic perspective. J Exp Biol 2014, 217(1):94-101.
  • [32]Tsankova N, Renthal W, Kumar A, Nestler EJ: Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 2007, 8(5):355-367.
  • [33]Iacobuzio-Donahue CA: Epigenetic changes in cancer. Annu Rev Pathol Mech Dis 2009, 4(1):229-249.
  • [34]Dawson Mark A, Kouzarides T: Cancer epigenetics: from mechanism to therapy. Cell 2012, 150(1):12-27.
  • [35]Rodriguez-Paredes M, Esteller M: Cancer epigenetics reaches mainstream oncology. Nat Med 2011, 17(3):330-339.
  • [36]Feinberg AP: Phenotypic plasticity and the epigenetics of human disease. Nature 2007, 447(7143):433-440.
  • [37]Kantlehner M, Kirchner R, Hartmann P, Ellwart JW, Alunni-Fabbroni M, Schumacher A: A high-throughput DNA methylation analysis of a single cell. Nucleic Acids Res 2011, 39(7):e44.
  • [38]Denomme MM, Zhang L, Mann MR: Single oocyte bisulfite mutagenesis. J Vis Exp 2012, (64):e4046.
  • [39]Lorthongpanich C, Cheow LF, Balu S, Quake SR, Knowles BB, Burkholder WF, Solter D, Messerschmidt DM: Single-cell DNA-methylation analysis reveals epigenetic chimerism in preimplantation embryos. Science 2013, 341(6150):1110-1112.
  • [40]Klein C, Schmidt-Kittler O, Schardt J, Pantel K, Speicher M, Riethmüller G: Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc Natl Acad Sci USA 1999, 96(8):4494-4499.
  • [41]Oda M, Glass JL, Thompson RF, Mo Y, Olivier EN, Figueroa ME, Selzer RR, Richmond TA, Zhang X, Dannenberg L, Green RD, Melnick A, Hatchwell E, Bouhassira EE, Verma A, Suzuki M, Greally JM: High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res 2009, 37(12):3829-3839.
  • [42]Hashimoto K, Kokubun S, Itoi E, Roach HI: Improved quantification of DNA methylation using methylation-sensitive restriction enzymes and real-time PCR. Epigenetics 2007, 2(2):86-91.
  • [43]Laird P: Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 2010, 11(3):191-203.
  • [44]Schumacher A, Kapranov P, Kaminsky Z, Flanagan J, Assadzadeh A, Yau P, Virtanen C, Winegarden N, Cheng J, Gingeras T, Petronis A: Microarray-based DNA methylation profiling: technology and applications. Nucleic Acids 2006, 34(2):528-542.
  • [45]Cross SH, Charlton JA, Nan X, Bird AP: Purification of CpG islands using a methylated DNA binding column. Nat Genet 1994, 6(3):236-244.
  • [46]Rauch T, Li H, Wu X, Pfeifer GP: MIRA-assisted microarray analysis, a New technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells. Cancer Res 2006, 66(16):7939-7947.
  • [47]Jones PA: Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012, 13(7):484-492.
  • [48]Zilberman D, Henikoff S: Genome-wide analysis of DNA methylation patterns. Development 2007, 134(22):3959-3965.
  • [49]Smith Z, Chan M, Mikkelsen T, Gu H, Gnirke A, Regev A, Meissner A: A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 2012, 484(7394):339-344.
  • [50]Smallwood SA, Tomizawa S, Krueger F, Ruf N, Carli N, Segonds-Pichon A, Sato S, Hata K, Andrews SR, Kelsey G: Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet 2011, 43(8):811-814.
  • [51]Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, Downey SL, Johnson BE, Fouse SD, Delaney A, Zhao Y, Olshen A, Ballinger T, Zhou X, Forsberg KJ, Gu J, Echipare L, O'Geen H, Lister R, Pelizzola M, Xi Y, Epstein CB, Bernstein BE, Hawkins RD, Ren B, Chung WY, Gu H, Bock C, Gnirke A, Zhang MQ, Haussler D, et al.: Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 2010, 28(10):1097-1105.
  • [52]Fouse SD, Nagarajan RO, Costello JF: Genome-scale DNA methylation analysis. Epigenomics 2010, 2(1):105-117.
  • [53]Michels KB, Binder AM, Dedeurwaerder S, Epstein CB, Greally JM, Gut I, Houseman EA, Izzi B, Kelsey KT, Meissner A, Milosavljevic A, Siegmund KD, Bock C, Irizarry RA: Recommendations for the design and analysis of epigenome-wide association studies. Nat Methods 2013, 10(10):949-955.
  • [54]Gu H, Bock C, Mikkelsen TS, Jager N, Smith ZD, Tomazou E, Gnirke A, Lander ES, Meissner A: Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nat Methods 2010, 7(2):133-136.
  • [55]Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES: Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 2008, 454(7205):766-770.
  • [56]Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, Schubeler D: Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 2007, 39(4):457-466.
  • [57]Elango N, Yi SV: Functional relevance of CpG island length for regulation of gene expression. Genetics 2011, 187(4):1077-1083.
  • [58]Krausz C, Sandoval J, Sayols S, Chianese C, Giachini C, Heyn H, Esteller M: Novel insights into DNA methylation features in spermatozoa: stability and peculiarities. PLoS One 2012, 7(10):e44479.
  • [59]Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, Herb B, Ladd-Acosta C, Rho J, Loewer S, Miller J, Schlaeger T, Daley GQ, Feinberg AP: Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 2009, 41(12):1350-1353.
  • [60]Bock C, Beerman I, Lien WH, Smith ZD, Gu H, Boyle P, Gnirke A, Fuchs E, Rossi DJ, Meissner A: DNA methylation dynamics during in vivo differentiation of blood and skin stem cells. Mol Cell 2012, 47(4):633-647.
  • [61]Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E, Reik W: Conservation of methylation reprogramming in mammalian development: Aberrant reprogramming in cloned embryos. Proc Natl Acad Sci 2001, 98(24):13734-13738.
  • [62]Andersen I, Reiner A, Aanes H, Alestrom P, Collas P: Developmental features of DNA methylation during activation of the embryonic zebrafish genome. Genome Biol 2012, 13(7):R65.
  • [63]Bui LC, Evsikov AV, Khan DR, Archilla C, Peynot N, Hénaut A, Le Bourhis D, Vignon X, Renard JP, Duranthon V: Retrotransposon expression as a defining event of genome reprograming in fertilized and cloned bovine embryos. Reproduction 2009, 138(2):289-299.
  • [64]Peaston AE, Evsikov AV, Graber JH, de Vries WN, Holbrook AE, Solter D, Knowles BB: Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell 2004, 7(4):597-606.
  • [65]Kigami D, Minami N, Takayama H, Imai H: MuERV-L is one of the earliest transcribed genes in mouse one-cell embryos. Biol Reprod 2003, 68(2):651-654.
  • [66]Kim M, Park Y-K, Kang T-W, Lee S-H, Rhee Y-H, Park J-L, Kim HJ, Lee D, Lee D, Kim S-Y, Kim YS: Dynamic changes in DNA methylation and hydroxymethylation when hES cells undergo differentiation toward a neuronal lineage. Hum Mol Genet 2013, 23(3):657-667.
  • [67]Smyth GK, Michaud J, Scott HS: Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 2005, 21(9):2067-2075.
  • [68]McCarthy DJ, Smyth GK: Testing significance relative to a fold-change threshold is a TREAT. Bioinformatics 2009, 25(6):765-771.
  • [69]Culhane AC, Thioulouse J, Perriere G, Higgins DG: MADE4: an R package for multivariate analysis of gene expression data. Bioinformatics 2005, 21(11):2789-2790.
  • [70]Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J: Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 2005, 110(1–4):462-467.
  • [71]Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA: Circos: an information aesthetic for comparative genomics. Genome Res 2009, 19(9):1639-1645.
  • [72]Meyer LR, Zweig AS, Hinrichs AS, Karolchik D, Kuhn RM, Wong M, Sloan CA, Rosenbloom KR, Roe G, Rhead B, Raney BJ, Pohl A, Malladi VS, Li CH, Lee BT, Learned K, Kirkup V, Hsu F, Heitner S, Harte RA, Haeussler M, Guruvadoo L, Goldman M, Giardine BM, Fujita PA, Dreszer TR, Diekhans M, Cline MS, Clawson H, Barber GP, et al.: The UCSC Genome Browser database: extensions and updates 2013. Nucleic Acids Res 2013, 41(D1):D64-D69.
  • [73]O’Doherty AM, O’Shea LC, Fair T: Bovine DNA methylation imprints are established in an oocyte size-specific manner, which are coordinated with the expression of the DNMT3 family proteins. Biol Reprod 2012, 86(3):67.
  • [74]Tost J, Gut IG: DNA methylation analysis by pyrosequencing. Nat Protoc 2007, 2(9):2265-2275.
  文献评价指标  
  下载次数:16次 浏览次数:10次