期刊论文详细信息
BMC Cancer
Methylation signature of lymph node metastases in breast cancer patients
Zeinab Barekati4  Ramin Radpour4  Qing Lu3  Johannes Bitzer6  Hong Zheng5  Paolo Toniolo1  Per Lenner2  Xiao Yan Zhong4 
[1] Department of Obstetrics & Gynecology, New York University School of Medicine / Institute Universitaire de Médecine Sociale et Preventive, CHUV, Rue du Bugnon 17, 1005, Lausanne, Switzerland
[2] Department of Oncology, Umeå University Hospital, Campus Area, S-90185, Umeå, Sweden
[3] Department of Breast Surgery, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
[4] Laboratory for Gynecological Oncology, Women’s Hospital/Department of Biomedicine, University of Basel, Hebelstrasse 20, CH 4031, Basel, Switzerland
[5] Laboratory of Molecular Diagnosis of Cancer, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
[6] Department of Obstetrics and Gynecology, Women’s Hospital, University of Basel, Schanzenstrasse 46, CH-4031, Basel, Switzerland
关键词: Biomarker;    Breast cancer;    Metastasis;    Methylation;   
Others  :  1080363
DOI  :  10.1186/1471-2407-12-244
 received in 2011-11-25, accepted in 2012-05-31,  发布年份 2012
PDF
【 摘 要 】

Background

Invasion and metastasis are two important hallmarks of malignant tumors caused by complex genetic and epigenetic alterations. The present study investigated the contribution of aberrant methylation profiles of cancer related genes, APC, BIN1, BMP6, BRCA1, CST6, ESR-b, GSTP1, P14 (ARF), P16 (CDKN2A), P21 (CDKN1A),PTEN, and TIMP3, in the matched axillary lymph node metastasis in comparison to the primary tumor tissue and the adjacent normal tissue from the same breast cancer patients to identify the potential of candidate genes methylation as metastatic markers.

Methods

The quantitative methylation analysis was performed using the SEQUENOM’s EpiTYPER™ assay which relies on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).

Results

The quantitative DNA methylation analysis of the candidate genes showed higher methylation proportion in the primary tumor tissue than that of the matched normal tissue and the differences were significant for the APC, BIN1, BMP6, BRCA1, CST6, ESR-b, P16, PTEN and TIMP3 promoter regions (P<0.05). Among those candidate methylated genes, APC, BMP6, BRCA1 and P16 displayed higher methylation proportion in the matched lymph node metastasis than that found in the normal tissue (P<0.05). The pathway analysis revealed that BMP6, BRCA1 and P16 have a role in prevention of neoplasm metastasis.

Conclusions

The results of the present study showed methylation heterogeneity between primary tumors and metastatic lesion. The contribution of aberrant methylation alterations of BMP6, BRCA1 and P16 genes in lymph node metastasis might provide a further clue to establish useful biomarkers for screening metastasis.

【 授权许可】

   
2012 Barekati et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141203002403695.pdf 1325KB PDF download
Figure 3. 55KB Image download
Figure 2. 81KB Image download
Figure 1. 89KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ: Cancer statistics, 2009. CA Cancer J Clin 2009, 59(4):225-249.
  • [2]Lindahl T, Engel G, Ahlgren J, Klaar S, Bjohle J, Lindman H, Andersson J, von Schoultz E, Bergh J: Can axillary dissection be avoided by improved molecular biological diagnosis? Acta Oncol 2000, 39(3):319-326.
  • [3]Reintgen D, Giuliano R, Cox CE: Sentinel Node Biopsy in Breast Cancer: An Overview. Breast J 2000, 6(5):299-305.
  • [4]Chambers AF, Groom AC, MacDonald IC: Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002, 2(8):563-572.
  • [5]Steeg PS: Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 2006, 12(8):895-904.
  • [6]Pantel K, Brakenhoff RH: Dissecting the metastatic cascade. Nat Rev Cancer 2004, 4(6):448-456.
  • [7]Baylin S, Bestor TH: Altered methylation patterns in cancer cell genomes: cause or consequence? Cancer Cell 2002, 1(4):299-305.
  • [8]Esteller M: CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 2002, 21(35):5427-5440.
  • [9]Shinozaki M, Hoon DS, Giuliano AE, Hansen NM, Wang HJ, Turner R, Taback B: Distinct hypermethylation profile of primary breast cancer is associated with sentinel lymph node metastasis. Clin Cancer Res 2005, 11(6):2156-2162.
  • [10]Zidan J, Dashkovsky I, Stayerman C, Basher W, Cozacov C, Hadary A: Comparison of HER-2 overexpression in primary breast cancer and metastatic sites and its effect on biological targeting therapy of metastatic disease. Br J Cancer 2005, 93(5):552-556.
  • [11]Feng W, Orlandi R, Zhao N, Carcangiu ML, Tagliabue E, Xu J, Bast RC: Yu Y: Tumor suppressor genes are frequently methylated in lymph node metastases of breast cancers. BMC Cancer 2010, 10( ):378.
  • [12]Chen L, Zhu Z, Sun X, Dong XY, Wei J, Gu F, Sun YL, Zhou J, Dong JT, Fu L: Down-regulation of tumor suppressor gene FEZ1/LZTS1 in breast carcinoma involves promoter methylation and associates with metastasis. Breast Cancer Res Treat 2009, 116(3):471-478.
  • [13]Cavalli LR, Urban CA, Dai D, de Assis S, Tavares DC, Rone JD, Bleggi-Torres LF, Lima RS, Cavalli IJ, Issa JP, et al.: Genetic and epigenetic alterations in sentinel lymph nodes metastatic lesions compared to their corresponding primary breast tumors. Cancer Genet Cytogenet 2003, 146(1):33-40.
  • [14]Andrews J, Kennette W, Pilon J, Hodgson A, Tuck AB, Chambers AF, Rodenhiser DI: Multi-platform whole-genome microarray analyses refine the epigenetic signature of breast cancer metastasis with gene expression and copy number. PLoS One 2010, 5(1):e8665.
  • [15]Rodenhiser DI, Andrews J, Kennette W, Sadikovic B, Mendlowitz A, Tuck AB, Chambers AF: Epigenetic mapping and functional analysis in a breast cancer metastasis model using whole-genome promoter tiling microarrays. Breast Cancer Res 2008, 10(4):R62. BioMed Central Full Text
  • [16]Radpour R, Kohler C, Haghighi MM, Fan AX, Holzgreve W, Zhong XY: Methylation profiles of 22 candidate genes in breast cancer using high-throughput MALDI-TOF mass array. Oncogene 2009, 28(33):2969-2978.
  • [17]Barekati Z, Radpour R, Kohler C, Zhang B, Toniolo P, Lenner P, Lv Q, Zheng H, Zhong XY: Methylation profile of TP53 regulatory pathway and mtDNA alterations in breast cancer patients lacking TP53 mutations. Hum Mol Genet 2010, 19(15):2936-2946.
  • [18]Radpour R, Barekati Z, Kohler C, Lv Q, Bürki N, Diesch C, Bitzer J, Zheng H, Schmid S, Zhong XY: Hypermethylation of tumor suppressor genes involved in critical regulatory pathways for developing a blood-based test in breast cancer. PLoS One 2011, 6(1):e16080.
  • [19]Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T, Xinarianos G, Cantor CR, Field JK, van den Boom D: Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci U S A 2005, 102(44):15785-15790.
  • [20]Radpour R, Haghighi MM, Fan AX, Torbati PM, Hahn S, Holzgreve W, Zhong XY: High-Throughput Hacking of the Methylation Patterns in Breast Cancer by In vitro Transcription and Thymidine-Specific Cleavage Mass Array on MALDI-TOF Silico-Chip. Mol Cancer Res 2008, 6(11):1702-1709.
  • [21]Radpour R, Sikora M, Grussenmeyer T, Kohler C, Barekati Z, Holzgreve W, Lefkovits I, Zhong XY: Simultaneous Isolation of DNA, RNA, and Proteins for Genetic, Epigenetic, Transcriptomic, and Proteomic Analysis. J Proteome Res 2009, 8(11):5264-5274.
  • [22]Metge BJ, Frost AR, King JA, Dyess DL, Welch DR, Samant RS, Shevde LA: Epigenetic silencing contributes to the loss of BRMS1 expression in breast cancer. Clin Exp Metastasis 2008, 25(7):753-763.
  • [23]Mehrotra J, Vali M, McVeigh M, Kominsky SL, Fackler MJ, Lahti-Domenici J, Polyak K, Sacchi N, Garrett-Mayer E, Argani P, et al.: Very high frequency of hypermethylated genes in breast cancer metastasis to the bone, brain, and lung. Clin Cancer Res 2004, 10(9):3104-3109.
  • [24]Rivenbark AG, Livasy CA, Boyd CE, Keppler D, Coleman WB: Methylation-dependent silencing of CST6 in primary human breast tumors and metastatic lesions. Exp Mol Pathol 2007, 83(2):188-197.
  • [25]Radpour R, Barekati Z, Haghighi MM, Kohler C, Asadollahi R, Torbati PM, Holzgreve W, Zhong XY: Correlation of telomere length shortening with promoter methylation profile of p16/Rb and p53/p21 pathways in breast cancer. Mod Pathol 2010, 23(5):763-772.
  • [26]Kim JH, Jung EJ, Lee HS, Kim MA, Kim WH: Comparative analysis of DNA methylation between primary and metastatic gastric carcinoma. Oncol Rep 2009, 21(5):1251-1259.
  • [27]Messick CA, Church JM, Liu X, Ting AH, Kalady MF: Stage III colorectal cancer: molecular disparity between primary cancers and lymph node metastases. Ann Surg Oncol 2010, 17(2):425-431.
  • [28]Scheel C, Onder T, Karnoub A, Weinberg RA: Adaptation versus selection: the origins of metastatic behavior. Cancer Res 2007, 67(24):11476-11479. discussion 11479-11480
  • [29]Feng J, Hu LH, Lu J, Li YR, Xie F: Diagnostic value of BRCA1 and p16 gene methylation in sporadic breast cancer. Ai Zheng 2009, 28(4):436-440.
  • [30]Zhao YF, Shen SP, Jiang JY, Geng H, Guo JG, Xie LP: Methylation and expression of gene p16INK4a and RB in breast carcinoma. Zhonghua Bing Li Xue Za Zhi 2010, 39(6):377-381.
  • [31]Su PF, Huang WL, Wu HT, Wu CH, Liu TY, Kao SY: p16(INK4A) promoter hypermethylation is associated with invasiveness and prognosis of oral squamous cell carcinoma in an age-dependent manner. Oral Oncol 2010, 46(10):734-739.
  • [32]Akiyoshi T, Uchida K, Tateyama S: Expression of bone morphogenetic protein-6 and bone morphogenetic protein receptors in myoepithelial cells of canine mammary gland tumors. Vet Pathol 2004, 41(2):154-163.
  • [33]Dai J, Keller J, Zhang J, Lu Y, Yao Z, Keller ET: Bone morphogenetic protein-6 promotes osteoblastic prostate cancer bone metastases through a dual mechanism. Cancer Res 2005, 65(18):8274-8285.
  • [34]Yang S, Du J, Wang Z, Yuan W, Qiao Y, Zhang M, Zhang J, Gao S, Yin J, Sun B, et al.: BMP-6 promotes E-cadherin expression through repressing deltaEF1 in breast cancer cells. BMC Cancer 2007, 7:211. BioMed Central Full Text
  • [35]Zhang M, Wang Q, Yuan W, Yang S, Wang X, Yan JD, Du J, Yin J, Gao SY, Sun BC, et al.: Epigenetic regulation of bone morphogenetic protein-6 gene expression in breast cancer cells. J Steroid Biochem Mol Biol 2007, 105(1–5):91-97.
  文献评价指标  
  下载次数:34次 浏览次数:29次