期刊论文详细信息
BMC Genomics
Genome organisation of the Acinetobacter lytic phage ZZ1 and comparison with other T4-like Acinetobacter phages
Guo-Qiang Zhao2  Jin Wang1  Xiao-Ting Wang1  Ya-Hui Li1  Gai Zhang1  De-Hai Huang1  Song-Jian Chen1  Shan-Mei Wang3  Shu-Wei Wang1  Zhen-Jiang Li1  Jing Jin2 
[1] Department of Pathogen Biology and Immunology, Henan Medical College, Shuanghu Road #8, Zhengzhou 451191, P. R. China;Department of Pathogen Biology, Basic Medical College of Zhengzhou University, Kexue Road #100, Zhengzhou 450001, P. R. China;Clinical Laboratory, Henan Provincial People’s Hospital, Zhengzhou 450003, P. R. China
关键词: T4-like phage;    Comparative genomic analyses;    Phage genome organisation;    Phage genome annotation;   
Others  :  1139580
DOI  :  10.1186/1471-2164-15-793
 received in 2014-02-06, accepted in 2014-09-10,  发布年份 2014
PDF
【 摘 要 】

Background

Phage ZZ1, which efficiently infects pathogenic Acinetobacter baumannii strains, is the fifth completely sequenced T4-like Acinetobacter phage to date. To gain a better understanding of the genetic characteristics of ZZ1, bioinformatics and comparative genomic analyses of the T4 phages were performed.

Results

The 166,687-bp double-stranded DNA genome of ZZ1 has the lowest GC content (34.4%) of the sequenced T4-like Acinetobacter phages. A total of 256 protein-coding genes and 8 tRNA genes were predicted. Forty-three percent of the predicted ZZ1 proteins share up to 73% amino acid identity with T4 proteins, and the homologous genes generally retained the same order and transcriptional direction. Beyond the conserved structural and DNA replication modules, T4 and ZZ1 have diverged substantially by the acquisition and deletion of large blocks of unrelated genes, especially in the first halves of their genomes. In addition, ZZ1 and the four other T4-like Acinetobacter phage genomes (Acj9, Acj61, 133, and Ac42) share a well-organised and highly conserved core genome, particularly in the regions encoding DNA replication and virion structural proteins. Of the ZZ1 proteins, 70, 64, 61, and 56% share up to 86, 85, 81, and 83% amino acid identity with Acj9, Acj61, 133, and Ac42 proteins, respectively. ZZ1 has a different number and types of tRNAs than the other 4 Acinetobacter phages, although some of the ZZ1-encoded tRNAs share high sequence similarity with the tRNAs from these phages. Over half of ZZ1-encoded tRNAs (5 out of 8) are related to optimal codon usage for ZZ1 proteins. However, this correlation was not present in any of the other 4 Acinetobacter phages.

Conclusions

The comparative genomic analysis of these phages provided some new insights into the evolution and diversity of Acinetobacter phages, which might elucidate the evolutionary origin and host-specific adaptation of these phages.

【 授权许可】

   
2014 Jin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150322012456771.pdf 1807KB PDF download
Figure 7. 219KB Image download
Figure 6. 104KB Image download
Figure 5. 123KB Image download
Figure 4. 170KB Image download
Figure 3. 121KB Image download
Figure 2. 69KB Image download
Figure 1. 172KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Jin J, Li ZJ, Wang SW, Wang SM, Huang DH, Li YH, Ma YY, Wang J, Liu F, Chen XD, Li GX, Wang XT, Wang ZQ, Zhao GQ: Isolation and characterization of ZZ1, a novel lytic phage that infects Acinetobacter baumannii clinical isolates. BMC Microbiol 2012, 12(1):156. BioMed Central Full Text
  • [2]Petrov VM, Ratnayaka S, Nolan JM, Miller ES, Karam JD: Genomes of the T4-related bacteriophages as windows on microbial genome evolution. Virol J 2010, 7:292. BioMed Central Full Text
  • [3]Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Ruger W: Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003, 67(1):86-156.
  • [4]Tetart F, Desplats C, Kutateladze M, Monod C, Ackermann HW, Krisch HM: Phylogeny of the major head and tail genes of the wide-ranging T4-type bacteriophages. J Bacteriol 2001, 183(1):358-366.
  • [5]Ackermann HW, Krisch HM: A catalogue of T4-type bacteriophages. Arch Virol 1997, 142(12):2329-2345.
  • [6]Arbiol C, Comeau AM, Kutateladze M, Adamia R, Krisch HM: Mobile regulatory cassettes mediate modular shuffling in T4-type phage genomes. Genome Biol Evol 2010, 2:140-152.
  • [7]Comeau AM, Bertrand C, Letarov A, Tetart F, Krisch HM: Modular architecture of the T4 phage superfamily: A conserved core genome and a plastic periphery. Virology 2007, 362(2):384-396.
  • [8]Miller ES, Heidelberg JF, Eisen JA, Nelson WC, Durkin AS, Ciecko A, Feldblyum TV, White O, Paulsen IT, Nierman WC, Lee J, Szczypinski B, Fraser CM: Complete genome sequence of the broad-host-range vibriophage KVP40: comparative genomics of a T4-related bacteriophage. J Bacteriol 2003, 185(17):5220-5233.
  • [9]Petrov VM, Nolan JM, Bertrand C, Levy D, Desplats C, Krisch HM, Karam JD: Plasticity of the gene functions for DNA replication in the T4-like phages. J Mol Biol 2006, 361(1):46-68.
  • [10]Mann NH, Clokie MR, Millard A, Cook A, Wilson WH, Wheatley PJ, Letarov A, Krisch HM: The genome of S-PM2, a “photosynthetic” T4-type bacteriophage that infects marine Synechococcus strains. J Bacteriol 2005, 187(9):3188-3200.
  • [11]Nolan JM, Petrov V, Bertrand C, Krisch HM, Karam JD: Genetic diversity among five T4-like bacteriophages. Virol J 2006, 3:30. BioMed Central Full Text
  • [12]Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW: Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol 2005, 3(5):e144.
  • [13]Liao WC, Ng WV, Lin IH, Syu WJ, Liu TT, Chang CH: T4-Like genome organization of the Escherichia coli O157:H7 lytic phage AR1. J Virol 2011, 85(13):6567-6578.
  • [14]Desplats C, Krisch HM: The diversity and evolution of the T4-type bacteriophages. Res Microbiol 2003, 154(4):259-267.
  • [15]Brussow H, Desiere F: Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Mol Microbiol 2001, 39(2):213-222.
  • [16]Chibani-Chennoufi S, Sidoti J, Bruttin A, Dillmann ML, Kutter E, Qadri F, Sarker SA, Brussow H: Isolation of Escherichia coli bacteriophages from the stool of pediatric diarrhea patients in Bangladesh. J Bacteriol 2004, 186(24):8287-8294.
  • [17]Zuber S, Ngom-Bru C, Barretto C, Bruttin A, Brussow H, Denou E: Genome analysis of phage JS98 defines a fourth major subgroup of t4-like phages in Escherichia coli. J Bacteriol 2007, 189:8206-8214.
  • [18]Filee J, Bapteste E, Susko E, Krisch HM: A selective barrier to horizontal gene transfer in the T4-type bacteriophages that has preserved a core genome with the viral replication and structural genes. Mol Biol Evol 2006, 23(9):1688-1696.
  • [19]Krisch HM, Hamlett NV, Berger H: Polynucleotide ligase in bacteriophage T4D recombination. Genetics 1972, 72(2):187-203.
  • [20]Singer BS, Gold L, Gauss P, Doherty DH: Determination of the amount of homology required for recombination in bacteriophage T4. Cell 1982, 31(1):25-33.
  • [21]Repoila F, Tetart F, Bouet JY, Krisch HM: Genomic polymorphism in the T-even bacteriophages. EMBO J 1994, 13(17):4181-4192.
  • [22]Desplats C, Dez C, Tetart F, Eleaume H, Krisch HM: Snapshot of the genome of the pseudo-T-even bacteriophage RB49. J Bacteriol 2002, 184(10):2789-2804.
  • [23]Park JY, Kim S, Kim SM, Cha SH, Lim SK, Kim J: Complete genome sequence of multidrug-resistant Acinetobacter baumannii strain 1656–2, which forms sturdy biofilm. J Bacteriol 2011, 193(22):6393-6394.
  • [24]Gan HM, Lean SS, Suhaili Z, Thong KL, Yeo CC: Genome sequence of Acinetobacter baumannii AC12, a polymyxin-resistant strain isolated from Terengganu. Malaysia J Bacteriol 2012, 194(21):5979-5980.
  • [25]Liou ML, Liu CC, Lu CW, Hsieh MF, Chang KC, Kuo HY, Lee CC, Chang CT, Yang CY, Tang CY: Genome sequence of Acinetobacter baumannii TYTH-1. J Bacteriol 2012, 194(24):6974.
  • [26]Liu S, Wang Y, Xu J, Li Y, Guo J, Ke Y, Yuan X, Wang L, Du X, Wang Z, Huang L, Zhang N, Chen Z: Genome sequence of an OXA23-producing, carbapenem-resistant Acinetobacter baumannii strain of sequence type ST75. J Bacteriol 2012, 194(21):6000-6001.
  • [27]Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C, Lewis JA, Jacobs-Sera D, Falbo J, Gross J, Pannunzio NR, Brucker W, Kumar V, Kandasamy J, Keenan L, Bardarov S, Kriakov J, Lawrence JG, Jacobs WR Jr, Hendrix RW, Hatfull GF: Origins of highly mosaic mycobacteriophage genomes. Cell 2003, 113(2):171-182.
  • [28]Kwan T, Liu J, DuBow M, Gros P, Pelletier J: The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci U S A 2005, 102(14):5174-5179.
  • [29]Mackiewicz P, Zakrzewska-Czerwinska J, Zawilak A, Dudek MR, Cebrat S: Where does bacterial replication start? Rules for predicting the oriC region. Nucleic Acids Res 2004, 32(13):3781-3791.
  • [30]Bailly-Bechet M, Vergassola M, Rocha E: Causes for the intriguing presence of tRNAs in phages. Genome Res 2007, 17(10):1486-1495.
  • [31]Kunisawa T: Synonymous codon preferences in bacteriophage T4: a distinctive use of transfer RNAs from T4 and from its host Escherichia coli. J Theor Biol 1992, 159(3):287-298.
  • [32]Bell-Pedersen D, Quirk S, Clyman J, Belfort M: Intron mobility in phage T4 is dependent upon a distinctive class of endonucleases and independent of DNA sequences encoding the intron core: mechanistic and evolutionary implications. Nucleic Acids Res 1990, 18(13):3763-3770.
  • [33]Eddy SR, Gold L: The phage T4 nrdB intron: a deletion mutant of a version found in the wild. Genes Dev 1991, 5(6):1032-1041.
  • [34]Quirk SM, Bell-Pedersen D, Tomaschewski J, Ruger W, Belfort M: The inconsistent distribution of introns in the T-even phages indicates recent genetic exchanges. Nucleic Acids Res 1989, 17(1):301-315.
  • [35]Landthaler M, Shub DA: Unexpected abundance of self-splicing introns in the genome of bacteriophage Twort: introns in multiple genes, a single gene with three introns, and exon skipping by group I ribozymes. Proc Natl Acad Sci U S A 1999, 96(12):7005-7010.
  • [36]Landthaler M, Shen BW, Stoddard BL, Shub DA: I-BasI and I-HmuI: two phage intron-encoded endonucleases with homologous DNA recognition sequences but distinct DNA specificities. J Mol Biol 2006, 358(4):1137-1151.
  • [37]van Sinderen D, Karsens H, Kok J, Terpstra P, Ruiters MH, Venema G, Nauta A: Sequence analysis and molecular characterization of the temperate lactococcal bacteriophage r1t. Mol Microbiol 1996, 19(6):1343-1355.
  • [38]Edgell DR, Belfort M, Shub DA: Barriers to intron promiscuity in bacteria. J Bacteriol 2000, 182(19):5281-5289.
  • [39]Foley S, Bruttin A, Brussow H: Widespread distribution of a group I intron and its three deletion derivatives in the lysin gene of Streptococcus thermophilus bacteriophages. J Virol 2000, 74(2):611-618.
  • [40]Besemer J, Lomsadze A, Borodovsky M: GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001, 29(12):2607-2618.
  • [41]Belshaw R, Katzourakis A: BlastAlign: a program that uses blast to align problematic nucleotide sequences. Bioinformatics 2005, 21(1):122-123.
  • [42]Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH: CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 2011, 39(Database issue):D225-229.
  • [43]Rice P, Longden I, Bleasby A: EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 2000, 16(6):276-277.
  • [44]Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25(5):955-964.
  • [45]Laslett D, Canback B: ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 2004, 32(1):11-16.
  • [46]Darling AC, Mau B, Blattner FR, Perna NT: Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004, 14(7):1394-1403.
  • [47]Zafar N, Mazumder R, Seto D: CoreGenes: a computational tool for identifying and cataloging “core” genes in a set of small genomes. BMC Bioinformatics 2002, 3:12. BioMed Central Full Text
  文献评价指标  
  下载次数:8次 浏览次数:1次