BMC Genomics | |
Lassa and Marburg viruses elicit distinct host transcriptional responses early after infection | |
John H Connor3  Arthur J Goff4  Anna N Honko2  Lisa E Hensley2  Judy Y Yen3  Ignacio S Caballero1  | |
[1] Bioinformatics Graduate Program, Boston University, 24 Cummington St, Boston, MA 02215, USA;Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702, USA;Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA;Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA | |
关键词: Early stage diagnostics; Gene expression profile; Biomarker; Interferon-stimulated genes; Marburg virus; Lassa virus; Transcriptional response; Transcriptomics; | |
Others : 1127730 DOI : 10.1186/1471-2164-15-960 |
|
received in 2014-06-20, accepted in 2014-10-22, 发布年份 2014 | |
【 摘 要 】
Background
Lassa virus and Marburg virus are two causative agents of viral hemorrhagic fever. Their diagnosis is difficult because patients infected with either pathogen present similar nonspecific symptoms early after infection. Current diagnostic tests are based on detecting viral proteins or nucleic acids in the blood, but these cannot be found during the early stages of disease, before the virus starts replicating in the blood. Using the transcriptional response of the host during infection can lead to earlier diagnoses compared to those of traditional methods.
Results
In this study, we use RNA sequencing to obtain a high-resolution view of the in vivo transcriptional dynamics of peripheral blood mononuclear cells (PBMCs) throughout both types of infection. We report a subset of host mRNAs, including heat-shock proteins like HSPA1B, immunoglobulins like IGJ, and cell adhesion molecules like SIGLEC1, whose differences in expression are strong enough to distinguish Lassa infection from Marburg infection in non-human primates. We have validated these infection-specific expression differences by using microarrays on a larger set of samples, and by quantifying the expression of individual genes using RT-PCR.
Conclusions
These results suggest that host transcriptional signatures are correlated with specific viral infections, and that they can be used to identify highly pathogenic viruses during the early stages of disease, before standard detection methods become effective.
【 授权许可】
2014 Caballero et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150221063511700.pdf | 570KB | download | |
Figure 6. | 24KB | Image | download |
Figure 5. | 73KB | Image | download |
Figure 4. | 43KB | Image | download |
Figure 3. | 65KB | Image | download |
Figure 5. | 37KB | Image | download |
Figure 1. | 69KB | Image | download |
【 图 表 】
Figure 1.
Figure 5.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]McCormick JB, King IJ, Webb P a, Johnson KM, O’Sullivan R, Smith ES, Trippel S, Tong TC: A case–control study of the clinical diagnosis and course of Lassa fever. J Infect Dis 1987, 155:445-455.
- [2]Macher A, Wolfe M: Historical Lassa fever reports and 30-year clinical update. Emerg Infect Dis 2006, 12:835-837.
- [3]Buckley SM, Casals J: Lassa fever, a new virus disease of man from West Africa. 3. Isolation and characterization of the virus. Am J Trop Med Hyg 1970, 19:680-691.
- [4]Shaffer JG, Grant DS, Schieffelin JS, Boisen ML, Goba A, Hartnett JN, Levy DC, Yenni RE, Moses LM, Fullah M, Momoh M, Fonnie M, Fonnie R, Kanneh L, Koroma VJ, Kargbo K, Ottomassathien D, Muncy IJ, Jones AB, Illick MM, Kulakosky PC, Haislip AM, Bishop CM, Elliot DH, Brown BL, Zhu H, Hastie KM, Andersen KG, Gire SK, Tabrizi S, et al.: Lassa fever in post-conflict sierra leone. PLoS Negl Trop Dis 2014, 8:e2748.
- [5]Bausch DG, Nichol ST, Muyembe-Tamfum JJ, Borchert M, Rollin PE, Sleurs H, Campbell P, Tshioko FK, Roth C, Colebunders R, Pirard P, Mardel S, Olinda LA, Zeller H, Tshomba A, Kulidri A, Libande ML, Mulangu S, Formenty P, Grein T, Leirs H, Braack L, Ksiazek T, Zaki S, Bowen MD, Smit SB, Leman PA, Burt FJ, Kemp A, Swanepoel R: Marburg hemorrhagic fever associated with multiple genetic lineages of virus. N Engl J Med 2006, 355:909-919.
- [6]Towner JS, Khristova ML, Sealy TK, Vincent MJ, Erickson BR, Bawiec DA, Hartman AL, Comer JA, Zaki SR, Ströher U, Gomes da Silva F, del Castillo F, Rollin PE, Ksiazek TG, Nichol ST: Marburgvirus genomics and association with a large hemorrhagic fever outbreak in Angola. J Virol 2006, 80:6497-6516.
- [7]Timen A: Response to imported case of marburg hemorrhagic fever, the Netherlands. Emerg Infect Dis 2009, 15:1171-1175.
- [8]Fujita N, Miller A, Miller G, Gershman K, Gallagher N, Marano N, Hale C, Jentes E: Imported case of Marburg hemorrhagic fever - Colorado, 2008. MMWR Morb Mortal Wkly Rep 2009, 58:1377-1381.
- [9]Drosten C, Kümmerer B, Schmitz H, Günther S: Molecular diagnostics of viral hemorrhagic fevers. Antiviral Res 2003, 57:61-87.
- [10]Green A: West Africa struggles to contain Ebola outbreak. Lancet 2014, 383:1196.
- [11]Baize S, Pannetier D, Oestereich L, Rieger T, Koivogui L, Magassouba N, Soropogui B, Sow MS, Keïta S, De Clerck H, Tiffany A, Dominguez G, Loua M, Traoré A, Kolié M, Malano ER, Heleze E, Bocquin A, Mély S, Raoul H, Caro V, Cadar D, Gabriel M, Pahlmann M, Tappe D, Schmidt-Chanasit J, Impouma B, Diallo AK, Formenty P, Van Herp M, et al.: Emergence of Zaire Ebola virus disease in Guinea - preliminary report. N Engl J Med 2014, 371:418-1425.
- [12]Panning M, Emmerich P, Olschläger S, Bojenko S, Koivogui L, Marx A, Lugala PC, Günther S, Bausch DG, Drosten C: Laboratory diagnosis of Lassa fever, liberia. Emerg Infect Dis 2010, 16:1041-1043.
- [13]Bausch DG, Rollin PE, Demby AH, Coulibaly M, Kanu J, Conteh AS, Wagoner KD, McMullan LK, Bowen MD, Peters CJ, Ksiazek TG: Diagnosis and clinical virology of Lassa fever as evaluated by enzyme-linked immunosorbent assay, indirect fluorescent-antibody test, and virus isolation. J Clin Microbiol 2000, 38:2670-2677.
- [14]Grolla A, Lucht A, Dick D, Strong JE, Feldmann H: Laboratory diagnosis of Ebola and Marburg hemorrhagic fever. Bull Soc Pathol Exot 2005, 98:205-209.
- [15]Jahrling PB, Peters CJ, Stephen EL: Enhanced treatment of Lassa fever by immune plasma combined with ribavirin in cynomolgus monkeys. J Infect Dis 1984, 149:420-427.
- [16]Geisbert TW, Feldmann H: Recombinant vesicular stomatitis virus-based vaccines against Ebola and Marburg virus infections. J Infect Dis 2011, 204 Suppl(Suppl 3):S1075-S1081.
- [17]Ursic-Bedoya R, Mire CE, Robbins M, Geisbert JB, Judge A, Maclachlan I, Geisbert TW: Protection against lethal Marburg virus infection mediated by lipid encapsulated small interfering RNA. J Infect Dis 2014, 209:562-570.
- [18]Malhotra S, Yen JY, Honko AN, Garamszegi S, Caballero IS, Johnson JC, Mucker EM, Trefry JC, Hensley LE, Connor JH: Transcriptional profiling of the circulating immune response to Lassa virus in an aerosol model of exposure. PLoS Negl Trop Dis 2013, 7:e2171.
- [19]Baas T, Baskin CR, Diamond DL, García-Sastre A, Bielefeldt-Ohmann H, Tumpey TM, Thomas MJ, Carter VS, Teal TH, Van Hoeven N, Proll S, Jacobs JM, Caldwell ZR, Gritsenko MA, Hukkanen RR, Camp DG, Smith RD, Katze MG: Integrated molecular signature of disease: analysis of influenza virus-infected macaques through functional genomics and proteomics. J Virol 2006, 80:10813-10828.
- [20]Zaas AK, Burke T, Chen M, McClain M, Nicholson B, Veldman T, Tsalik EL, Fowler V, Rivers EP, Otero R, Kingsmore SF, Voora D, Lucas J, Hero AO, Carin L, Woods CW, Ginsburg GS: A host-based RT-PCR gene expression signature to identify acute respiratory viral infection. Sci Transl Med 2013, 5:203ra126-203ra126.
- [21]Hu X, Yu J, Crosby SD, Storch G a: Gene expression profiles in febrile children with defined viral and bacterial infection. Proc Natl Acad Sci U S A 2013, 110:12792-12797.
- [22]Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM: A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 2011, 472:481-485.
- [23]Dufour JH, Dziejman M, Liu MT, Leung JH, Lane TE, Luster AD: IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J Immunol 2002, 168:3195-3204.
- [24]Izquierdo-Useros N, Lorizate M, Puertas MC, Rodriguez-Plata MT, Zangger N, Erikson E, Pino M, Erkizia I, Glass B, Clotet B, Keppler OT, Telenti A, Kräusslich H-G, Martinez-Picado J: Siglec-1 is a novel dendritic cell receptor that mediates HIV-1 trans-infection through recognition of viral membrane gangliosides. PLoS Biol 2012, 10:e1001448.
- [25]Crocker PR, Paulson JC, Varki A: Siglecs and their roles in the immune system. Nat Rev Immunol 2007, 7:255-266.
- [26]Baez MV, Boccaccio GL: Mammalian Smaug is a translational repressor that forms cytoplasmic foci similar to stress granules. J Biol Chem 2005, 280:43131-43140.
- [27]Howlin J, Rosenkvist J, Andersson T: TNK2 preserves epidermal growth factor receptor expression on the cell surface and enhances migration and invasion of human breast cancer cells. Breast Cancer Res 2008, 10:R36. BioMed Central Full Text
- [28]Hink-Schauer C, Estébanez-Perpiñá E, Kurschus FC, Bode W, Jenne DE: Crystal structure of the apoptosis-inducing human granzyme A dimer. Nat Struct Biol 2003, 10:535-540.
- [29]Bahassi EM, Conn CW, Myer DL, Hennigan RF, McGowan CH, Sanchez Y, Stambrook PJ: Mammalian Polo-like kinase 3 (Plk3) is a multifunctional protein involved in stress response pathways. Oncogene 2002, 21:6633-6640.
- [30]Xie S, Wu H, Wang Q, Cogswell JP, Husain I, Conn C, Stambrook P, Jhanwar-Uniyal M, Dai W: Plk3 functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway. J Biol Chem 2001, 276:43305-43312.
- [31]Ke N, Claassen G, Yu D-H, Albers A, Fan W, Tan P, Grifman M, Hu X, Defife K, Nguy V, Meyhack B, Brachat A, Wong-Staal F, Li Q-X: Nuclear hormone receptor NR4A2 is involved in cell transformation and apoptosis. Cancer Res 2004, 64:8208-8212.
- [32]Gupta M, Mahanty S, Ahmed R, Rollin PE: Monocyte-derived human macrophages and peripheral blood mononuclear cells infected with ebola virus secrete MIP-1alpha and TNF-alpha and inhibit poly-IC-induced IFN-alpha in vitro. Virology 2001, 284:20-25.
- [33]Huang Y, Zaas AK, Rao A, Dobigeon N, Woolf PJ, Veldman T, Øien NC, McClain MT, Varkey JB, Nicholson B, Carin L, Kingsmore S, Woods CW, Ginsburg GS, Hero AO: Temporal dynamics of host molecular responses differentiate symptomatic and asymptomatic influenza a infection. PLoS Genet 2011, 7:e1002234.
- [34]Chen M, Carlson D, Zaas A, Woods CW, Ginsburg GS, Hero A, Lucas J, Carin L: Detection of viruses via statistical gene expression analysis. IEEE Trans Biomed Eng 2011, 58:468-479.
- [35]Fritz E a, Geisbert JB, Geisbert TW, Hensley LE, Reed DS: Cellular immune response to Marburg virus infection in cynomolgus macaques. Viral Immunol 2008, 21:355-363.
- [36]Van der Kuyl AC, van den Burg R, Zorgdrager F, Groot F, Berkhout B, Cornelissen M: Sialoadhesin (CD169) expression in CD14+ cells is upregulated early after HIV-1 infection and increases during disease progression. PLoS ONE 2007, 2:e257.
- [37]Hayes M, Salvato M: Arenavirus evasion of host anti-viral responses. Viruses 2012, 4:2182-2196.
- [38]Basler CF, Amarasinghe GK: Evasion of interferon responses by Ebola and Marburg viruses. J Interferon Cytokine Res 2009, 29:511-520.
- [39]Hensley LE, Alves DA, Geisbert JB, Fritz EA, Reed C, Larsen T, Geisbert TW: Pathogenesis of Marburg hemorrhagic fever in cynomolgus macaques. J Infect Dis 2011, 204 Suppl(Suppl 3):S1021-S1031.
- [40]Geisbert TW, Hensley LE, Gibb TR, Steele KE, Jaax NK, Jahrling PB: Apoptosis induced in vitro and in vivo during infection by Ebola and Marburg viruses. Lab Invest 2000, 80:171-186.
- [41]Hensley LE, Smith MA, Geisbert JB, Fritz EA, Daddario-DiCaprio KM, Larsen T, Geisbert TW: Pathogenesis of Lassa fever in cynomolgus macaques. Virol J 2011, 8:205. BioMed Central Full Text
- [42]Zapata JC, Carrion R, Patterson JL, Crasta O, Zhang Y, Mani S, Jett M, Poonia B, Djavani M, White DM, Lukashevich IS, Salvato MS: Transcriptome analysis of human peripheral blood mononuclear cells exposed to Lassa virus and to the attenuated Mopeia/Lassa reassortant 29 (ML29), a vaccine candidate. PLoS Negl Trop Dis 2013, 7:e2406.
- [43]Djavani MM, Crasta OR, Zapata JC, Fei Z, Folkerts O, Sobral B, Swindells M, Bryant J, Davis H, Pauza CD, Lukashevich IS, Hammamieh R, Jett M, Salvato MS: Early blood profiles of virus infection in a monkey model for Lassa fever. J Virol 2007, 81:7960-7973.
- [44]National Research Council of the National Academies: Guide for the care and use of laboratory animals. Washington, D.C: National Academies Press; 2011.
- [45]Bolger AM, Lohse M, Usadel B: Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30:2114-2120.
- [46]Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25:1105-1111.
- [47]Zhang S-J, Liu C-J, Shi M, Kong L, Chen J-Y, Zhou W-Z, Zhu X, Yu P, Wang J, Yang X, Hou N, Ye Z, Zhang R, Xiao R, Zhang X, Li C-Y: RhesusBase: a knowledgebase for the monkey research community. Nucleic Acids Res 2013, 41(Database issue):D892-D905.
- [48]Anders S: HTSeq: Analysing high-throughput sequencing data with Python. 2010. URL [http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html webcite]
- [49]Robinson MD, Oshlack A: A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 2010, 11:R25. BioMed Central Full Text
- [50]Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26:139-140.
- [51]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25:1754-1760.
- [52]Yen JY, Garamszegi S, Geisbert JB, Rubins KH, Geisbert TW, Honko A, Xia Y, Connor JH, Hensley LE: Therapeutics of Ebola hemorrhagic fever: whole-genome transcriptional analysis of successful disease mitigation. J Infect Dis 2011, 204 Suppl(Suppl 3):S1043-S1052.
- [53]Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3:Article3.
- [54]Novoradovskaya N, Whitfield ML, Basehore LS, Novoradovsky A, Pesich R, Usary J, Karaca M, Wong WK, Aprelikova O, Fero M, Perou CM, Botstein D, Braman J: Universal Reference RNA as a standard for microarray experiments. BMC Genomics 2004, 5:20. BioMed Central Full Text
- [55]Smyth GK, Speed T: Normalization of cDNA microarray data. Methods 2003, 31:265-273.