BMC Genomics | |
Genomes of Alteromonas australica, a world apart | |
Francisco Rodriguez-Valera1  Elena P Ivanova2  Aitor Gonzaga1  Mario López-Pérez1  | |
[1] División de Microbiología, Evolutionary Genomics Group, Universidad Miguel Hernández, Apartado 18, San Juan, 03550 Alicante, Spain;Swinburne University of Technology, PO Box 218, Hawthorn VIC 3122, Melbourne, Australia | |
关键词: Integron; Population genomics; Genomic Island; Alteromonas; Biogeography; Alteromonas australica; | |
Others : 1089769 DOI : 10.1186/1471-2164-15-483 |
|
received in 2014-04-29, accepted in 2014-06-13, 发布年份 2014 | |
【 摘 要 】
Background
Alteromonas is a genus of marine bacteria that is very easy to isolate and grow in the laboratory. There are genomes available of the species Alteromonas macleodii from different locations around the world and an Alteromonas sp. isolated from a sediment in Korea. We have analyzed the genomes of two strains classified by 16S rRNA (>99% similarity) as the recently described species Alteromonas australica, and isolated from opposite ends of the world; A. australica DE170 was isolated in the South Adriatic (Mediterranean) at 1000 m depth while A. australica H17T was isolated from a sea water sample collected in St Kilda Beach, Tasman Sea.
Results
Although these two strains belong to a clearly different species from A. macleodii, the overall synteny is well preserved and the flexible genomic islands seem to code for equivalent functions and be located at similar positions. Actually the genomes of all the Alteromonas species known to date seem to preserve synteny quite well with the only exception of the sediment isolate SN2. Among the specific metabolic features found for the A. australica isolates there is the degradation of xylan and production of cellulose as extracellular polymeric substance by DE170 or the potential ethanol/methanol degradation by H17T.
Conclusions
The genomes of the two A. australica isolates are not more different than those of strains of A. macleodii isolated from the same sample. Actually the recruitment from metagenomes indicates that all the available genomes are found in most tropical-temperate marine samples analyzed and that they live in consortia of several species and multiple clones within each. Overall the hydrolytic activities of the Alteromonas genus as a whole are impressive and fit with its known capabilities to exploit sudden inputs of organic matter in their environment.
【 授权许可】
2014 López-Pérez et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150128151451925.pdf | 1879KB | download | |
Figure 5. | 61KB | Image | download |
Figure 4. | 93KB | Image | download |
Figure 3. | 156KB | Image | download |
Figure 2. | 112KB | Image | download |
Figure 1. | 118KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Sass AM, Sass H, Coolen MJL, Cypionka H, Overmann J: Microbial communities in the chemocline of a hypersaline deep-sea Basin (Urania Basin, Mediterranean Sea). Appl Environ Microbiol 2001, 67:5392-5402.
- [2]Baumann L, Baumann P, Mandel M, Allen RD: Taxonomy of aerobic marine eubacteria. J Bacteriol 1972, 110:402-429.
- [3]Acinas SG, Antón J, Rodríguez-Valera F: Diversity of free-living and attached bacteria in offshore Western Mediterranean Waters as depicted by analysis of genes encoding 16S rRNA. Appl Environ Microbiol 1999, 65:514-522.
- [4]García-Martínez J, Acinas SG, Massana R, Rodríguez-Valera F: Prevalence and microdiversity of Alteromonas macleodii-like microorganisms in different oceanic regions. Environ Microbiol 2002, 4:42-50.
- [5]López-López A, Bartual SG, Stal L, Onyshchenko O, Rodríguez-Valera F: Genetic analysis of housekeeping genes reveals a deep-sea ecotype of Alteromonas macleodii in the Mediterranean Sea. Environ Microbiol 2005, 7:649-659.
- [6]Shi Y, McCarren J, DeLong EF: Transcriptional responses of surface water marine microbial assemblages to deep-sea water amendment. Environ Microbiol 2012, 14:191-206.
- [7]McCarren J, Becker JW, Repeta DJ, Shi Y, Young CR, Malmstrom RR, Chisholm SW, DeLong EF: Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Natl Acad Sci 2010, 107:16420-16427.
- [8]Van Trappen S, Tan T-L, Yang J, Mergaert J, Swings J: Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas. Int J Syst Evol Microbiol 2004, 54:1157-1163.
- [9]Gonzaga A, Martin-Cuadrado A-B, López-Pérez M, Megumi Mizuno C, García-Heredia I, Kimes NE, Lopez-García P, Moreira D, Ussery D, Zaballos M, Ghai R, Rodriguez-Valera F: Polyclonality of concurrent natural populations of Alteromonas macleodii. Genome Biol Evol 2012, 4:1360-1374.
- [10]Ivanova E, Ng H, Webb H, Kurilenko V, Zhukova N, Mikhailov V, Ponamoreva O, Crawford R: Alteromonas australica sp. nov., isolated from the Tasman Sea. Antonie Van Leeuwenhoek 2013, 103:877-884.
- [11]López-Pérez M, Gonzaga A, Rodriguez-Valera F: Genomic diversity of "Deep Ecotype"Alteromonas macleodii isolates: evidence for Pan-Mediterranean Clonal Frames. Genome Biol Evol 2013, 5:1220-1232.
- [12]Mizuno CM, Kimes NE, López-Pérez M, Ausó E, Rodriguez-Valera F, Ghai R: A Hybrid NRPS-PKS gene cluster related to the Bleomycin family of Antitumor antibiotics in Alteromonas macleodii Strains. PLoS One 2013, 8:e76021.
- [13]López-Pérez M, Martin-Cuadrado A-B, Rodriguez-Valera F: Homologous recombination is involved in the diversity of replacement flexible genomic islands in aquatic prokaryotes. Front Genet 2014, 5:147.
- [14]Ivars-Martinez E, Martin-Cuadrado A-B, D’Auria G, Mira A, Ferriera S, Johnson J, Friedman R, Rodriguez-Valera F: Comparative genomics of two ecotypes of the marine planktonic copiotroph Alteromonas macleodii suggests alternative lifestyles associated with different kinds of particulate organic matter. ISME J 2008, 2:1194-1212.
- [15]Math RK, Jin HM, Kim JM, Hahn Y, Park W, Madsen EL, Jeon CO: Comparative genomics reveals adaptation by Alteromonas sp. SN2 to Marine Tidal-Flat conditions: cold tolerance and Aromatic Hydrocarbon metabolism. PLoS One 2012, 7:e35784.
- [16]Gonzaga A, López-Pérez M, Martin-Cuadrado A-B, Ghai R, Rodriguez-Valera F: Complete genome sequence of the Copiotrophic Marine Bacterium Alteromonas macleodii Strain ATCC 27126T. J Bacteriol 2012, 194:6998.
- [17]Gauthier G, Gauthier M, Christen R: Phylogenetic analysis of the Genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA Sequences and Division of the Genus Alteromonas into Two Genera, Alteromonas (Emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 1995, 45:755-761.
- [18]López-Pérez M, Gonzaga A, Martin-Cuadrado A-B, Onyshchenko O, Ghavidel A, Ghai R, Rodriguez-Valera F: Genomes of surface isolates of Alteromonas macleodii: the life of a widespread marine opportunistic copiotroph. Sci Rep 2012, 2:696.
- [19]Didelot X, Falush D: Inference of bacterial microevolution using Multilocus sequence data. Genetics 2007, 175:1251-1266.
- [20]Didelot X, Lawson D, Darling A, Falush D: Inference of homologous recombination in bacteria using whole-genome sequences. Genetics 2010, 186:1435-1449.
- [21]Read TD, Joseph SJ, Didelot X, Liang B, Patel L, Dean D: Comparative analysis of Chlamydia psittaci genomes reveals the recent emergence of a pathogenic lineage with a broad host range. mBio 2013, 4(2):e00604-12.
- [22]Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, DeLong EF, Chisholm SW: Genomic islands and the ecology and evolution of Prochlorococcus. Science 2006, 311:1768-1770.
- [23]Dufresne A, Ostrowski M, Scanlan D, Garczarek L, Mazard S, Palenik B, Paulsen I, de Marsac N, Wincker P, Dossat C, Ferriera S, Johnson J, Post AF, Hess WR, Partensky F: Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol 2008, 9:R90.
- [24]Lopez-Perez M, Ghai R, Leon M, Rodriguez-Olmos A, Copa-Patino J, Soliveri J, Sanchez-Porro C, Ventosa A, Rodriguez-Valera F: Genomes of "Spiribacter", a streamlined, successful halophilic bacterium. BMC Genomics 2013, 14:787.
- [25]Pasic L, Rodriguez-Mueller B, Martin-Cuadrado A-B, Mira A, Rohwer F, Rodriguez-Valera F: Metagenomic islands of hyperhalophiles: the case of Salinibacter ruber. BMC Genomics 2009, 10:570.
- [26]Weyman PD, Smith HO, Xu Q: Genetic analysis of the Alteromonas macleodii [NiFe]-hydrogenase. FEMS Microbiol Lett 2011, 322:180-187.
- [27]Weyman PD, Vargas WA, Tong Y, Yu J, Maness P-C, Smith HO, Xu Q: Heterologous expression of Alteromonas macleodii and Thiocapsa roseopersicina [NiFe] Hydrogenases in Synechococcus elongatus. PLoS One 2011, 6:e20126.
- [28]Klippel B, Lochner A, Bruce DC, Davenport KW, Detter C, Goodwin LA, Han J, Han S, Land ML, Mikhailova N, Nolan M, Pennacchio L, Pitluck S, Tapia R, Woyke T, Wiebusch S, Basner A, Abe F, Horikoshi K, Keller M, Antranikian G: Complete genome sequence of the marine, cellulose and xylan degrading bacterium Glaciecola sp. 4H-3-7 + YE-5. J Bacteriol 2011, 17:4547-4548.
- [29]Mazel D: Integrons: agents of bacterial evolution. Nat Rev Micro 2006, 4:608-620.
- [30]Boucher Y, Labbate M, Koenig JE, Stokes HW: Integrons: mobilizable platforms that promote genetic diversity in bacteria. Trends Microbiol 2007, 15:301-309.
- [31]Hall RM, Collis CM: Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Mol Microbiol 1995, 15:593-600.
- [32]Cambray G, Guerout A-M, Mazel D: Integrons. Annu Rev Genet 2010, 44:141-166.
- [33]Biskri L, Bouvier M, Guérout A-M, Boisnard S, Mazel D: Comparative study of class 1 Integron and Vibrio cholerae Superintegron Integrase activities. J Bacteriol 2005, 187:1740-1750.
- [34]Rowe-Magnus DA, Guérout A-M, Mazel D: Super-integrons. Res Microbiol 1999, 150:641-651.
- [35]Guerin É, Cambray G, Sanchez-Alberola N, Campoy S, Erill I, Da Re S, Gonzalez-Zorn B, Barbé J, Ploy M-C, Mazel D: The SOS response controls integron recombination. Science 2009, 324:1034.
- [36]Bhaya D, Davison M, Barrangou R: CRISPR-cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 2011, 45:273-297.
- [37]Grissa I, Vergnaud G, Pourcel C: CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007, 35:W52-W57.
- [38]Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, Moineau S, Mojica FJM, Wolf YI, Yakunin AF, van der Oost J, Koonin EV: Evolution and classification of the CRISPR–Cas systems. Nat Rev Micro 2011, 9:467-477.
- [39]Almendros C, Mojica FJM, Díez-Villaseñor C, Guzmán NM, García-Martínez J: CRISPR-Cas functional module exchange in Escherichia coli. mBio 2014, 5(1):e00767-13.
- [40]Koonin EV, Makarova KS: CRISPR-Cas: an adaptive immunity system in prokaryotes. F1000 Biol Rep 2009, 1:95.
- [41]Misra HS, Rajpurohit YS, Khairnar NP: Pyrroloquinoline-quinone and its versatile roles in biological processes. J Biosci 2012, 37:313-325.
- [42]Anthony C: The quinoprotein dehydrogenases for methanol and glucose. Arch Biochem Biophys 2004, 428:2-9.
- [43]Vasu K, Nagaraja V: Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev 2013, 77:53-72.
- [44]Zhou X, He X, Liang J, Li A, Xu T, Kieser T, Helmann JD, Deng Z: A novel DNA modification by sulphur. Mol Microbiol 2005, 57:1428-1438.
- [45]Xu T, Yao F, Zhou X, Deng Z, You D: A novel host-specific restriction system associated with DNA backbone S-modification in Salmonella. Nucleic Acids Res 2010, 38:7133-7141.
- [46]Daccord A, Ceccarelli D, Rodrigue S, Burrus V: Comparative analysis of mobilizable genomic islands. J Bacteriol 2013, 195:606-614.
- [47]Prade RA: Xylanases: from biology to biotechnology. Biotechnol Genet Eng Rev 1996, 13:101-132.
- [48]Römling U: Molecular biology of cellulose production in bacteria. Res Microbiol 2002, 153:205-212.
- [49]Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ: Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol 2006, 8:1997-2011.
- [50]Kirby JE, Trempy JE, Gottesman S: Excision of a P4-like cryptic prophage leads to Alp protease expression in Escherichia coli. J Bacteriol 1994, 176:2068-2081.
- [51]Wang X, Kim Y, Wood TK: Control and benefits of CP4-57 prophage excision in Escherichia coli biofilms. ISME J 2009, 3:1164-1179.
- [52]Hauser MA, Scocca JJ: Site-specific integration of the Haemophilus influenzae bacteriophage HP1: location of the boundaries of the phage attachment site. J Bacteriol 1992, 174:6674-6677.
- [53]Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS: PHAST: a fast phage search tool. Nucleic Acids Res 2011, 39:347-352.
- [54]Rodriguez-Valera F, Mizuno CM, Ghai R: Tales from a thousand and one phages. Bacteriophage 2014, 4:e28265.
- [55]Xia LC, Cram JA, Chen T, Fuhrman JA, Sun F: Accurate genome relative abundance estimation based on shotgun metagenomic reads. PLoS One 2011, 6:e27992.
- [56]Coleman ML, Chisholm SW: Ecosystem-specific selection pressures revealed through comparative population genomics. Proc Natl Acad Sci 2010.
- [57]DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard N-U, Martinez A, Sullivan MB, Edwards R, Brito BR, Chisholm SW, Karl DM: Community genomics among stratified microbial assemblages in the ocean’s interior. Science 2006, 311:496-503.
- [58]Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, Hoffman JM, Remington K, Beeson K, Tran B, Smith H, Baden-Tillson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkoch C, Venter JE, Li K, Kravitz S, Heidelberg JF, Utterback T, Rogers YH, Falcón LI, Souza V, Bonilla-Rosso G, Eguiarte LE, Karl DM, Sathyendranath S, et al.: The sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical pacific. PLoS Biol 2007, 5:e77.
- [59]Smedile F, Messina E, La Cono V, Tsoy O, Monticelli LS, Borghini M, Giuliano L, Golyshin PN, Mushegian A, Yakimov MM: Metagenomic analysis of hadopelagic microbial assemblages thriving at the deepest part of Mediterranean Sea, matapan-vavilov deep. Environ Microbiol 2013, 15:167-182.
- [60]Howard EC, Sun S, Reisch CR, del Valle DA, Bürgmann H, Kiene RP, Moran MA: Changes in dimethylsulfoniopropionate demethylase gene assemblages in response to an induced phytoplankton bloom. Appl Environ Microbiol 2011, 77:524-531.
- [61]Rodriguez-Valera F, Martin-Cuadrado A-B, Rodriguez-Brito B, Pasic L, Thingstad TF, Rohwer F, Mira A: Explaining microbial population genomics through phage predation. Nat Rev Micro 2009, 7:828-836.
- [62]Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, Ding H, Marttinen P, Malmstrom RR, Stocker R, Follows MJ, Stepanauskas R, Chisholm SW: Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 2014, 344:416-420.
- [63]Loper JE, Hassan KA, Mavrodi DV, Davis EW II, Lim CK, Shaffer BT, Elbourne LDH, Stockwell VO, Hartney SL, Breakwell K, Henkels MD, Tetu SG, Rangel LI, Kidarsa TA, Wilson NL, van de Mortel JE, Song C, Blumhagen R, Radune D, Hostetler JB, Brinkac LM, Durkin AS, Kluepfel DA, Wechter WP, Anderson AJ, Kim YC, Pierson LS 3rd, Pierson EA, Lindow SE, Kobayashi DY, et al.: Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in Multitrophic interactions. PLoS Genet 2012, 8:e1002784.
- [64]Qin QL, Xie BB, Yu Y, Shu YL, Rong JC, Zhang YJ, Zhao DL, Chen XL, Zhang XY, Chen B, Zhou BC, Zhang YZ: Comparative genomics of the marine bacterial genus Glaciecola reveals the high degree of genomic diversity and genomic characteristic for cold adaptation. Environ Microbiol 2013, 16:1642-1653.
- [65]Lukjancenko O, Ussery DW: Vibrio chromosome-specific families. Front Microbiol 2014, 5:73.
- [66]Elsaied H, Stokes HW, Kitamura K, Kurusu Y, Kamagata Y, Maruyama A: Marine integrons containing novel integrase genes, attachment sites, attI, and associated gene cassettes in polluted sediments from Suez and Tokyo bays. ISME J 2011, 5:1162-1177.
- [67]Hutchinson GE: The paradox of the plankton. Am Nat 1961, 95:137-145.
- [68]Neumann B, Pospiech A, Schairer HU: Rapid isolation of genomic DNA from gram-negative bacteria. Trends Genet 1992, 8:332-333.
- [69]Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de bruijn graphs. Genome Res 2008, 18:821-829.
- [70]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999, 41:95-98.
- [71]Rice P, Longden I, Bleasby A: EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 2000, 16:276-277.
- [72]Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream M-A, Barrell B: Artemis: sequence visualization and annotation. Bioinformatics 2000, 16:944-945.
- [73]Carver TJ, Rutherford KM, Berriman M, Rajandream M-A, Barrell BG, Parkhill J: ACT: the Artemis comparison tool. Bioinformatics 2005, 21:3422-3423.
- [74]Richter M, Rosselló-Móra R: Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009, 106:19126-19131.
- [75]Edgar R: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004, 5:113.
- [76]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
- [77]Kurtz S, Phillippy A, Delcher A, Smoot M, Shumway M, Antonescu C, Salzberg S: Versatile and open software for comparing large genomes. Genome Biol 2004, 5:R12.
- [78]Zhao Y, Wu J, Yang J, Sun S, Xiao J, Yu J: PGAP: pan-genomes analysis pipeline. Bioinformatics 2012, 28:416-418.
- [79]Lassmann T, Sonnhammer E: Kalign - an accurate and fast multiple sequence alignment algorithm. BMC Bioinformatics 2005, 6:298.
- [80]Price MN, Dehal PS, Arkin AP: FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010, 5:e9490.
- [81]Darling ACE, Mau B, Blattner FR, Perna NT: Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004, 14:1394-1403.
- [82]Konstantinidis KT, Braff J, Karl DM, DeLong EF: Comparative metagenomic analysis of a microbial community residing at a depth of 4,000 meters at station ALOHA in the north pacific subtropical gyre. Appl Environ Microbiol 2009, 75:5345-5355.
- [83]Quaiser A, Zivanovic Y, Moreira D, Lopez-Garcia P: Comparative metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara. ISME J 2011, 5:285-304.
- [84]Ghai R, Martin-Cuadrado A-B, Molto AG, Heredia IG, Cabrera R, Martin J, Verdu M, Deschamps P, Moreira D, Lopez-Garcia P, Mira A, Rodriguez-Valera F: Metagenome of the Mediterranean deep chlorophyll maximum studied by direct and fosmid library 454 pyrosequencing. ISME J 2010, 4:1154-1166.