期刊论文详细信息
BMC Genomics
AmrZ is a global transcriptional regulator implicated in iron uptake and environmental adaption in P. fluorescens F113
Rafael Rivilla1  Marta Martín1  Pilar Vesga1  Miguel Redondo-Nieto1  Francisco Martínez-Granero1 
[1] Departamento de Biología, Universidad Autónoma de Madrid, C/Darwin, 2. 28049 Madrid Spain
关键词: ChIP-seq;    Pseudomonas;    Iron;    Transcriptional regulator;    AmrZ;   
Others  :  1217625
DOI  :  10.1186/1471-2164-15-237
 received in 2013-10-03, accepted in 2014-03-21,  发布年份 2014
PDF
【 摘 要 】

Background

AmrZ, a RHH transcriptional regulator, regulates motility and alginate production in pseudomonads. Expression of amrZ depends on the environmental stress sigma factor AlgU. amrZ and algU mutants have been shown to be impaired in environmental fitness in different pseudomonads with different lifestyles. Considering the importance of AmrZ for the ecological fitness of pseudomonads and taking advantage of the full sequencing and annotation of the Pseudomonas fluorescens F113 genome, we have carried out a ChIP-seq analysis from a pool of eight independent ChIP assays in order to determine the AmrZ binding sites and its implication in the regulation of genes involved in environmental adaption.

Results

154 enriched regions (AmrZ binding sites) were detected in this analysis, being 76% of them located in putative promoter regions. 18 of these peaks were validated in an independent ChIP assay by qPCR. The 154 peaks were assigned to genes involved in several functional classes such as motility and chemotaxis, iron homeostasis, and signal transduction and transcriptional regulators, including genes encoding proteins implicated in the turn-over of c-diGMP. A putative AmrZ binding site was also observed by aligning the 154 regions with the MEME software. This motif was present in 75% of the peaks and was similar to that described in the amrZ and algD promoters in P. aeruginosa. We have analyzed the role of AmrZ in the regulation of iron uptake genes, to find that AmrZ represses their expression under iron limiting conditions.

Conclusions

The results presented here show that AmrZ is an important global transcriptional regulator involved in environmental sensing and adaption. It is also a new partner in the complex iron homeostasis regulation.

【 授权许可】

   
2014 Martínez-Granero et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150707140601703.pdf 754KB PDF download
Figure 4. 75KB Image download
Figure 3. 94KB Image download
Figure 2. 106KB Image download
Figure 1. 111KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Waligora EA, Ramsey DM, Pryor EE Jr, Lu H, Hollis T, Sloan GP, Deora R, Wozniak DJ: AmrZ beta-sheet residues are essential for DNA binding and transcriptional control of Pseudomonas aeruginosa virulence genes. J Bacteriol 2010, 192(20):5390-5401.
  • [2]Baynham PJ, Wozniak DJ: Identification and characterization of AlgZ, an AlgT-dependent DNA-binding protein required for Pseudomonas aeruginosa algD transcription. Mol Microbiol 1996, 22(1):97-108.
  • [3]Baynham PJ, Brown AL, Hall LL, Wozniak DJ: Pseudomonas aeruginosa AlgZ, a ribbon-helix-helix DNA-binding protein, is essential for alginate synthesis and algD transcriptional activation. Mol Microbiol 1999, 33(5):1069-1080.
  • [4]Ramsey DM, Baynham PJ, Wozniak DJ: Binding of Pseudomonas aeruginosa AlgZ to sites upstream of the algZ promoter leads to repression of transcription. J Bacteriol 2005, 187(13):4430-4443.
  • [5]Ryder C, Byrd M, Wozniak DJ: Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 2007, 10(6):644-648.
  • [6]Wozniak DJ, Wyckoff TJ, Starkey M, Keyser R, Azadi P, O’Toole GA, Parsek MR: Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A 2003, 100(13):7907-7912.
  • [7]Jones CJ, Ryder CR, Mann EE, Wozniak DJ: AmrZ modulates Pseudomonas aeruginosa biofilm architecture by directly repressing transcription of the psl operon. J Bacteriol 2013, 195(8):1637-1644.
  • [8]Pryor EE Jr, Waligora EA, Xu B, Dellos-Nolan S, Wozniak DJ, Hollis T: The transcription factor AmrZ utilizes multiple DNA binding modes to recognize activator and repressor sequences of Pseudomonas aeruginosa virulence genes. PLoS Pathog 2012, 8(4):e1002648.
  • [9]Wozniak DJ, Sprinkle AB, Baynham PJ: Control of Pseudomonas aeruginosa algZ expression by the alternative sigma factor AlgT. J Bacteriol 2003, 185(24):7297-7300.
  • [10]Chand NS, Clatworthy AE, Hung DT: The two-component sensor KinB acts as a phosphatase to regulate Pseudomonas aeruginosa virulence. J Bacteriol 2012, 194(23):6537-6547.
  • [11]Damron FH, Napper J, Teter MA, Yu HD: Lipotoxin F of Pseudomonas aeruginosa is an AlgU-dependent and alginate-independent outer membrane protein involved in resistance to oxidative stress and adhesion to A549 human lung epithelia. Microbiology 2009, 155(Pt 4):1028-1038.
  • [12]Jones AK, Fulcher NB, Balzer GJ, Urbanowski ML, Pritchett CL, Schurr MJ, Yahr TL, Wolfgang MC: Activation of the Pseudomonas aeruginosa AlgU regulon through mucA mutation inhibits cyclic AMP/Vfr signaling. J Bacteriol 2010, 192(21):5709-5717.
  • [13]Schenk A, Weingart H, Ullrich MS: The alternative sigma factor AlgT, but not alginate synthesis, promotes in planta multiplication of Pseudomonas syringae pv. glycinea. Microbiology 2008, 154(Pt 2):413-421.
  • [14]Fraud S, Campigotto AJ, Chen Z, Poole K: MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: involvement in chlorhexidine resistance and induction by membrane-damaging agents dependent upon the AlgU stress response sigma factor. Antimicrob Agents Chemother 2008, 52(12):4478-4482.
  • [15]Wood LF, Ohman DE: Identification of genes in the sigma22 regulon of Pseudomonas aeruginosa required for cell envelope homeostasis in either the planktonic or the sessile mode of growth. MBio 2012, 3(3):e00094-12.
  • [16]Baynham PJ, Ramsey DM, Gvozdyev BV, Cordonnier EM, Wozniak DJ: The Pseudomonas aeruginosa ribbon-helix-helix DNA-binding protein AlgZ (AmrZ) controls twitching motility and biogenesis of type IV pili. J Bacteriol 2006, 188(1):132-140.
  • [17]Tart AH, Blanks MJ, Wozniak DJ: The AlgT-dependent transcriptional regulator AmrZ (AlgZ) inhibits flagellum biosynthesis in mucoid, nonmotile Pseudomonas aeruginosa cystic fibrosis isolates. J Bacteriol 2006, 188(18):6483-6489.
  • [18]Fenton AM, Stephens PM, Crowley J, O’Callaghan M, O’Gara F: Exploitation of gene(s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Appl Environ Microbiol 1992, 58(12):3873-3878.
  • [19]Barahona E, Navazo A, Yousef-Coronado F, Aguirre de Carcer D, Martinez-Granero F, Espinosa-Urgel M, Martin M, Rivilla R: Efficient rhizosphere colonization by Pseudomonas fluorescens F113 mutants unable to form biofilms on abiotic surfaces. Environ Microbiol 2010, 12(12):3185-3195.
  • [20]De La Fuente L, Landa BB, Weller DM: Host crop affects rhizosphere colonization and competitiveness of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 2006, 96(7):751-762.
  • [21]Naseby DC, Lynch JM: Effects of Pseudomonas fluorescens F113 on ecological functions in the pea rhizosphere are dependent on pH. Microb Ecol 1999, 37(4):248-256.
  • [22]Martinez-Granero F, Navazo A, Barahona E, Redondo-Nieto M, Rivilla R, Martin M: The Gac-Rsm and SadB signal transduction pathways converge on AlgU to downregulate motility in Pseudomonas fluorescens. PLoS ONE 2012, 7(2):e31765.
  • [23]Martínez-Granero F, Rivilla R, Martin M: Rhizosphere selection of highly motile phenotypic variants of Pseudomonas fluorescens with enhanced competitive colonization ability. Appl Environ Microbiol 2006, 72(5):3429-3434.
  • [24]Redondo-Nieto M, Barret M, Morrisey JP, Germaine K, Martinez-Granero F, Barahona E, Navazo A, Sanchez-Contreras M, Moynihan JA, Giddens SR, Coppoolse ER, Muriel C, Stiekema WJ, Rainey P, Dowling DN, O´Gara F, Martín M, Rivilla R: Genome sequence of the biocontrol strain Pseudomonas fluorescens F113. J Bacteriol 2012, 194(5):1273-1274.
  • [25]Redondo-Nieto M, Barret M, Morrissey J, Germaine K, Martinez-Granero F, Barahona E, Navazo A, Sanchez-Contreras M, Moynihan JA, Muriel C, Dowling DN, O'Gara F, Martín M, Rivilla R: Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genomics 2013, 14:54. BioMed Central Full Text
  • [26]Pryor EE Jr, Wozniak DJ, Hollis T: Crystallization of Pseudomonas aeruginosa AmrZ protein: development of a comprehensive method for obtaining and optimization of protein-DNA crystals. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012, 68(Pt 8):985-993.
  • [27]Firoved AM, Boucher JC, Deretic V: Global genomic analysis of AlgU (sigmaE)-dependent promoters (sigmulon) in Pseudomonas aeruginosa and implications for inflammatory processes in cystic fibrosis. J Bacteriol 2002, 184(4):1057-1064.
  • [28]Keith LM, Bender CL: AlgT (sigma22) controls alginate production and tolerance to environmental stress in Pseudomonas syringae. J Bacteriol 1999, 181(23):7176-7184.
  • [29]Schnider-Keel U, Lejbolle KB, Baehler E, Haas D, Keel C: The sigma factor AlgU (AlgT) controls exopolysaccharide production and tolerance towards desiccation and osmotic stress in the biocontrol agent Pseudomonas fluorescens CHA0. Appl Environ Microbiol 2001, 67(12):5683-5693.
  • [30]Damron FH, Qiu D, Yu HD: The Pseudomonas aeruginosa sensor kinase KinB negatively controls alginate production through AlgW-dependent MucA proteolysis. J Bacteriol 2009, 191(7):2285-2295.
  • [31]Damron FH, Yu HD: Pseudomonas aeruginosa MucD regulates the alginate pathway through activation of MucA degradation via MucP proteolytic activity. J Bacteriol 2011, 193(1):286-291.
  • [32]Qiu D, Eisinger VM, Head NE, Pier GB, Yu HD: ClpXP proteases positively regulate alginate overexpression and mucoid conversion in Pseudomonas aeruginosa. Microbiology 2008, 154(Pt 7):2119-2130.
  • [33]Coggan KA, Wolfgang MC: Global regulatory pathways and cross-talk control Pseudomonas aeruginosa environmental lifestyle and virulence phenotype. Curr Issues Mol Biol 2012, 14(2):47-70.
  • [34]Martínez-Granero F, Navazo A, Barahona E, Redondo-Nieto M, González de Heredia E, Baena I, Martín-Martín I, Rivilla R, Martín M: Identification of flgZ as a flagellar gene encoding a PilZ domain protein that regulates swimming motility and biofilm formation in Pseudomonas. PLoS ONE 2014, 9(2):e87608.
  • [35]Ochsner UA, Vasil ML: Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa: cycle selection of iron-regulated genes. Proc Natl Acad Sci U S A 1996, 93(9):4409-4414.
  • [36]Imperi F, Tiburzi F, Visca P: Molecular basis of pyoverdine siderophore recycling in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2009, 106(48):20440-20445.
  • [37]Lim CK, Hassan KA, Tetu SG, Loper JE, Paulsen IT: The effect of iron limitation on the transcriptome and proteome of Pseudomonas fluorescens Pf-5. PLoS ONE 2012, 7(6):e39139.
  • [38]Frangipani E, Visaggio D, Heeb S, Kaever V, Camara M, Visca P, Imperi F: The Gac/Rsm and cyclic-di-GMP signalling networks coordinately regulate iron uptake in Pseudomonas aeruginosa. Environ Microbiol 2013.
  • [39]Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F: Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 1992, 58(1):353-358.
  • [40]de Lorenzo V, Eltis L, Kessler B, Timmis KN: Analysis of Pseudomonas gene products using lacIq/Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene 1993, 123(1):17-24.
  • [41]Finan TM, Kunkel B, De Vos GF, Signer ER: Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 1986, 167(1):66-72.
  • [42]Scher FM, Baker R: Effects of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 1982, 72(12):1567-1573.
  • [43]Bertani G: Studies on Lysogenesis. 1. The mode of phage liberation by Lysogenic Escherichia coli. J Bacteriol 1951, 62(3):293-300.
  • [44]Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B: RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res 2012, 40(W1):W622-W627.
  • [45]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10(3):R25. BioMed Central Full Text
  • [46]Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS: Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008, 9(9):R137. BioMed Central Full Text
  • [47]Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS: MEME Suite: tools for motif discovery and searching. Nucleic Acids Res 2009, 37(suppl 2):W202-W208.
  文献评价指标  
  下载次数:2次 浏览次数:25次