| BMC Microbiology | |
| The evolution and population structure of Lactobacillus fermentum from different naturally fermented products as determined by multilocus sequence typing (MLST) | |
| Zhihong Sun1  Heping Zhang1  Bilige Menghe1  Haiyan Xu1  Yuqin Song1  Wenjun Liu1  Tong Dan1  | |
| [1] Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China | |
| 关键词: Housekeeping gene; Sequence type (ST); Traditional Fermented food; Population structure; multilocus sequence typing (MLST); Lactobacillus fermentum; | |
| Others : 1212036 DOI : 10.1186/s12866-015-0447-z |
|
| received in 2015-01-12, accepted in 2015-05-14, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Lactobacillus fermentum is economically important in the production and preservation of fermented foods. A repeatable and discriminative typing method was devised to characterize L. fermentum at the molecular level. The multilocus sequence typing (MLST) scheme developed was based on analysis of the internal sequence of 11 housekeeping gene fragments (clpX, dnaA, dnaK, groEL, murC, murE, pepX, pyrG, recA, rpoB, and uvrC).
Results
MLST analysis of 203 isolates of L. fermentum from Mongolia and seven provinces/ autonomous regions in China identified 57 sequence types (ST), 27 of which were represented by only a single isolate, indicating high genetic diversity. Phylogenetic analyses based on the sequence of the 11 housekeeping gene fragments indicated that the L. fermentum isolates analyzed belonged to two major groups. A standardized index of association (IAS) indicated a weak clonal population structure in L. fermentum. Split decomposition analysis indicated that recombination played an important role in generating the genetic diversity observed in L. fermentum. The results from the minimum spanning tree strongly suggested that evolution of L. fermentum STs was not correlated with geography or food-type.
Conclusions
The MLST scheme developed will be valuable for further studies on the evolution and population structure of L. fermentum isolates used in food products.
【 授权许可】
2015 Tong et al.; licensee BioMed Central.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150225065519451.pdf | 480KB | ||
| Fig. 4. | 58KB | Image | |
| Fig. 3. | 54KB | Image | |
| Fig. 2. | 65KB | Image | |
| Fig. 1. | 45KB | Image |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
【 参考文献 】
- [1]Tulumoğlu Ş, Kaya Hİ, Şimşek Ö. Probiotic characteristics of Lactobacillus fermentum strains isolated from tulum cheese. Anaerobe. 2014; 30C:120-125.
- [2]Swain MR, Anandharaj M, Ray RC, Parveen Rani R. Fermented fruits and vegetables of Asia: a potential source of probiotics. Biotechnol Res Int. 2014; 2014:250424.
- [3]Abdelgadira WS, Hamadb SH, Moller PL, Jakobsen M. Characterization of the dominant microbiota of Sudanese fermented milk Rob. Int Dairy J. 2001; 11:63-70.
- [4]Dan T, Fukuda K, Sugai-Bannai M, Takakuwa N, Motoshima H, Urashima T. Characterization and expression analysis of the exopolysaccharide gene cluster in Lactobacillus fermentum TDS030603. Biosci, Biotechnol, Biochem. 2009; 73(12):2656-2664.
- [5]Dellaglio F, Torriani S, Felis GE. Reclassification of Lactobacillus cellobiosus Rogosa et al. 1953 as a later synonym of Lactobacillus fermentum Beijerinck. Int J Syst Evol Microbiol 2004. 1901; 54(3):809-812.
- [6]Gil-Campos M, López MÁ, Rodriguez-Benítez MV, Romero J, Roncero I, Linares MD et al.. Lactobacillus fermentum CECT 5716 is safe and well tolerated in infants of 1–6 months of age: a randomized controlled trial. Pharmacol Res. 2012; 65(2):231-238.
- [7]Fazeli MR, Shahverdi AR, Sedaghat B, Amalifar H, Samadi N. Sourdough-isolated Lactobacillus fermentum as a potent anti-mould preservative of a traditional Iranian bread. Eur Food Res Technol. 2004; 218:554-556.
- [8]Morita H, Yoshikawa H, Sakata R, Nagata Y, Tanaka H. Synthesis of nitric oxide from the two equivalent guanidino nitrogens of L-arginine by Lactobacillus fermentum. J Bacteriol. 1997; 179(24):7812-7815.
- [9]Beijerink MW. Sur les ferments lactiques de l’industrie. Arch Ne’erl Sci Exactes Nat Se’rie II. 1901; 7:212-243.
- [10]Stiles ME, Holzapfel WH. Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol. 1997; 36(1):1-29.
- [11]Rogosa M, Wiseman RF, Mitchell JA, Disraely MN, Beaman AJ. Species differentiation of oral lactobacilli from man including description of Lactobacillus salivarius nov spec and Lactobacillus cellobiosus nov spec. J Bacteriol. 1953; 65(6):681-699.
- [12]Vescovo M, Dellaglio F, Bottazzi V, Sarra PG. Deoxyribonucleic acid homology among Lactobacillus species of the subgenus Betabacterium Orla-Jensen. Microbiologica. 1979; 2:317-330.
- [13]Collins MD, Rodrigues UM, Ash C, Aguirre M, Farrow JAE, Martinez-Murcia A et al.. Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol Lett. 1991; 77:5-12.
- [14]Gardiner GE, Heinemann C, Bruce AW, Beuerman D, Reid G. Persistence of Lactobacillus fermentum RC-14 and Lactobacillus rhamnosus GR-1 but not L. rhamnosus GG in the human vagina as demonstrated by randomly amplified polymorphic DNA. Clin Diagn Lab Immunol. 2002; 9(1):92-96.
- [15]Nigatu A, Ahrné S, Molin G. Randomly amplified polymorphic DNA (RAPD) profiles for the distinction of Lactobacillus species. Antonie Van Leeuwenhoek. 2001; 79(1):1-6.
- [16]Rodas AM, Ferrer S, Pardo I. Polyphasic study of wine Lactobacillus strains: taxonomic implications. Int J Syst Evol Microbiol. 2005; 55(1):197-207.
- [17]Gosiewski T, Chmielarczyk A, Strus M, Brzychczy-Włoch M, Heczko PB. The application of genetics methods to differentiation of three Lactobacillus species of human origin. Ann Microbiol. 2012; 62(4):1437-1445.
- [18]Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, Swings J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev. 1996; 60(2):407-438.
- [19]Bain JM, Tavanti A, Davidson AD, Jacobsen MD, Shaw D, Gow NA et al.. Multilocus sequence typing of the pathogenic fungus Aspergillus fumigatus. J Clin Microbiol. 2007; 45(5):1469-1477.
- [20]Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R et al.. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A. 1998; 95(6):3140-3145.
- [21]Feil EJ, Enright MC. Analyses of clonality and the evolution of bacterial pathogens. Curr Opin Microbiol. 2004; 7(3):308-313.
- [22]Oh PL, Benson AK, Peterson DA, Patil PB, Moriyama EN, Roos S et al.. Diversification of the gut symbiont Lactobacillus reuteri as a result of host-driven evolution. ISME J. 2010; 4(3):377-387.
- [23]Cai H, Rodriguez BT, Zhang W, Broadbent JR, Steele JL. Genotypic and phenotypic characterization of Lactobacillus casei strains isolated from different ecological niches suggests frequent recombination and niche specificity. Microbiology. 2007; 153(8):2655-2665.
- [24]Diancourt L, Passet V, Chervaux C, Garault P, Smokvina T, Brisse S. Multilocus sequence typing of Lactobacillus casei reveals a clonal population structure with low levels of homologous recombination. Appl Environ Microbiol. 2007; 73(20):6601-6611.
- [25]de Las RB, Marcobal A, Muñoz R. Development of a multilocus sequence typing method for analysis of Lactobacillus plantarum strains. Microbiology. 2006; 152(1):85-93.
- [26]Picozzi C, Bonacina G, Vigentini I, Foschino R. Genetic diversity in Italian Lactobacillus sanfranciscensis strains assessed by multilocus sequence typing and pulsed-field gel electrophoresis analyses. Microbiology. 2010; 156:2035-2045.
- [27]Tanigawa K, Watanabe K. Multilocus sequence typing reveals a novel subspeciation of Lactobacillus delbrueckii. Microbiology. 2011; 157(3):727-738.
- [28]Chaillou S, Lucquin I, Najjari A, Zagorec M, Champomier-Vergès MC. Population genetics of Lactobacillus sakei reveals three lineages with distinct evolutionary histories. PLoS One. 2013; 8(9):e73253.
- [29]Feil EJ, Cooper JE, Grundmann H, Robinson DA, Enright MC, Berendt T et al.. How clonal is Staphylococcus aureus? J Bacteriol. 2003; 185:3307-3316.
- [30]Urwin R, Maiden MC. Multi-locus sequence typing: a tool for global epidemiology. T rends Microbiol. 2003; 11(10):479-487.
- [31]Cooper JE, Feil EJ. Multilocus sequence typing-what is resolved? Trends Microbiol. 2004; 12(8):373-377.
- [32]de Las RB, Marcobal A, Muñoz R. Allelic diversity and population structure in Oenococcus oeni as determined from sequence analysis of housekeeping genes. Appl Environ Microbiol. 2004; 70(12):7210-7219.
- [33]Bain JM, Tavanti A, Davidson AD, Jacobsen MD, Shaw D, Gow NA et al.. Multilocus sequence typing of the pathogenic fungus Aspergillus fumigatus. J Clin Microbiol. 2007; 45(5):1469-1477.
- [34]Madslien EH, Olsen JS, Granum PE, Blatny JM. Genotyping of B. licheniformis based on a novel multi-locus sequence typing (MLST) scheme. BMC Microbiol. 2012; 12:230. BioMed Central Full Text
- [35]Xu H, Sun Z, Liu W, Yu J, Song Y, Lv Q et al.. Multilocus sequence typing of Lactococcus lactis from naturally fermented milk foods in ethnic minority areas of China. J Dairy Sci. 2014; 97(5):2633-2645.
- [36]Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol. 2004; 186(5):1518-1530.
- [37]Huson DH. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics. 1998; 14(1):68-73.
- [38]Enright MC, Robinson DA, Randle G, Feil EJ, Grundmann H, Spratt BG. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci U S A. 2002; 99(11):7687-7692.
- [39]Felis GE, Dellaglio F. Taxonomy of Lactobacilli and Bifidobacteria. Curr Issues Intest Microbiol. 2007; 8(2):44-61.
- [40]Dan T, Chen X, Bao QH, Liu WJ, Zhang HP. Effect of L-Threonine concentrations on acetaldehyde production and glyA gene expression in fermented milk by Streptococcus thermophilus. Food Biotechnol. 2012; 26(3):280-292.
- [41]Sun ZH, Liu WJ, Song YQ, Xu HY, Yu J, Menghe B, Zhang HP, Chen YF: Population structure of Lactobacillus helveticus isolates from naturally fermented dairy products based on multilocus sequence typing. J dairy Sci 2015, DOI: http://dx.doi.org/10.3168/jds.2014-9133.
- [42]Morita H, Toh H, Fukuda S, Horikawa H, Oshima K, Suzuki T et al.. Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res. 2008; 15(3):151-161.
- [43]Bilhère E, Lucas PM, Claisse O, Lonvaud-Funel A. Multilocus sequence typing of Oenococcus oeni: detection of two subpopulations shaped by intergenic recombination. Appl Environ Microbiol. 2009; 75(5):1291-1300.
- [44]Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics. 2003; 19(18):2496-2497.
- [45]Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009; 25(11):1451-1452.
- [46]Jolley KA, Feil EJ, Chan MS, Maiden MC. Sequence type analysis and recombinational tests (START). Bioinformatics. 2001; 17(12):1230-1231.
- [47]Suerbaum S, Lohrengel M, Sonnevend A, Ruberg F, Kist M. Allelic diversity and recombination in Campylobacter jejuni. J Bacteriol. 2001; 183(8):2553-2559.
PDF