期刊论文详细信息
BMC Medical Genomics
A comprehensive analysis of adiponectin QTLs using SNP association, SNP cis-effects on peripheral blood gene expression and gene expression correlation identified novel metabolic syndrome (MetS) genes with potential role in carcinogenesis and systemic inflammation
Ahmed H Kissebah4  John Blangero3  Harald H H Göring3  David L Rainwater3  Melanie A Carless3  Joanne E Curran3  Anthony Comuzzie3  Thomas D Dyer3  Reham M Abdou4  Ulrich Broeckel2  Diana Cerjak4  Omar Ali2  Michael Olivier1  Jack W Kent3  Yi Zhang4 
[1] Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA;Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA;Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA;Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
关键词: Inflammation;    Cancer risk;    Metabolic syndrome;    Adiponectin;   
Others  :  1092468
DOI  :  10.1186/1755-8794-6-14
 received in 2012-12-17, accepted in 2013-04-23,  发布年份 2013
PDF
【 摘 要 】

Background

Metabolic syndrome (MetS) is an aberration associated with increased risk for cancer and inflammation. Adiponectin, an adipocyte-produced abundant protein hormone, has countering effect on the diabetogenic and atherogenic components of MetS. Plasma levels of adiponectin are negatively correlated with onset of cancer and cancer patient mortality. We previously performed microsatellite linkage analyses using adiponectin as a surrogate marker and revealed two QTLs on chr5 (5p14) and chr14 (14q13).

Methods

Using individuals from 85 extended families that contributed to the linkage and who were measured for 42 clinical and biologic MetS phenotypes, we tested QTL-based SNP associations, peripheral white blood cell (PWBC) gene expression, and the effects of cis-acting SNPs on gene expression to discover genomic elements that could affect the pathophysiology and complications of MetS.

Results

Adiponectin levels were found to be highly intercorrelated phenotypically with the majority of MetS traits. QTL-specific haplotype-tagging SNPs associated with MetS phenotypes were annotated to 14 genes whose function could influence MetS biology as well as oncogenesis or inflammation. These were mechanistically categorized into four groups: cell-cell adhesion and mobility, signal transduction, transcription and protein sorting. Four genes were highly prioritized: cadherin 18 (CDH18), myosin X (MYO10), anchor protein 6 of AMPK (AKAP6), and neuronal PAS domain protein 3 (NPAS3). PWBC expression was detectable only for the following genes with multi-organ or with multi-function properties: NPAS3, MARCH6, MYO10 and FBXL7. Strong evidence of cis-effects on the expression of MYO10 in PWBC was found with SNPs clustered near the gene’s transcription start site. MYO10 expression in PWBC was marginally correlated with body composition (p= 0.065) and adipokine levels in the periphery (p = 0.064). Variants of genes AKAP6, NPAS3, MARCH6 and FBXL7 have been previously reported to be associated with insulin resistance, inflammatory markers or adiposity studies using genome-wide approaches whereas associations of CDH18 and MYO10 with MetS traits have not been reported before.

Conclusions

Adiponectin QTLs-based SNP association and mRNA expression identified genes that could mediate the association between MetS and cancer or inflammation.

【 授权许可】

   
2013 Zhang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128184653531.pdf 1373KB PDF download
Figure 3. 45KB Image download
Figure 2. 36KB Image download
Figure 1. 52KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Day C: Metabolic syndrome, or What you will: definitions and epidemiology. Diab Vasc Dis Res 2007, 4(1):32-38.
  • [2]Russo A, Autelitano M, Bisanti L: Metabolic syndrome and cancer risk. Eur J Cancer 2008, 44(2):293-297.
  • [3]Talvensaari KK, Lanning M, Tapanainen P, Knip M: Long-term survivors of childhood cancer have an increased risk of manifesting the metabolic syndrome. J Clin Endocrinol Metab 1996, 81(8):3051-3055.
  • [4]Chandran M, Phillips SA, Ciaraldi T, Henry RR: Adiponectin: more than just another fat cell hormone. Diab Care 2003, 26:2442-2450.
  • [5]Pajvani UB, Hawkins M, Combs TP, Rajala MW, Doebber T, Berger JP, Wagner JA, Wu M, Knopps A, Xiang AH, Utzschneider KM, Kahn SE, Olefsky JM, Buchanan TA, Scherer PE: Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J Biol Chem 2004, 279:12152-12162.
  • [6]Ouchi N, Walsh K: Adiponectin as an anti-inflammatory factor. Clin Chim Acta 2007, 380(1–2):24-30.
  • [7]Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, Eto K, Yamashita T, Kamon J, Satoh H, Yano W, Froguel P, Nagai R, Kimura S, Kadowaki T, Noda T: Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem 2002, 277(29):25863-25866.
  • [8]Magge SN, Stettler N, Koren D, Levitt Katz LE, Gallagher PR, Mohler ER 3rd, Rader DJ: Adiponectin is associated with favorable lipoprotein profile, independent of BMI and insulin resistance, in adolescents. J Clin Endocrinol Metab 2011, 96(5):1549-1554.
  • [9]Kelesidis I, Kelesidis T, Mantzoros CS: Adiponectin and cancer: a systematic review. Br J Cancer 2006, 94(9):1221-1225.
  • [10]Comuzzie AG, Funahashi T, Sonnenberg G, Martin LJ, Jacob HJ, Black AE, Maas D, Takahashi M, Kihara S, Tanaka S, Matsuzawa Y, Blangero J, Cohen D, Kissebah A: The genetic basis of plasma variation in adiponectin, a global endophenotype for obesity and the metabolic syndrome. J Clin Endocrinol Metab 2001, 86(9):4321-4325.
  • [11]Kissebah AH, Sonnenberg GE, Myklebust J, Goldstein M, Broman K, James RG, Marks JA, Krakower GR, Jacob HJ, Weber J, Martin L, Blangero J, Comuzzie AG: Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proc Natl Acad Sci U S A 2000, 97(26):14478-14483.
  • [12]Sonnenberg GE, Krakower GR, Martin LJ, Olivier M, Kwitek AE, Comuzzie AG, Blangero J, Kissebah AH: Genetic determinants of obesity-related lipid traits. J Lipid Res 2004, 45(4):610-615.
  • [13]Svendsen OL, Haarbo J, Heitmann BL, Gotfredsen A, Christiansen C: Measurement of body fat in elderly subjects by dual-energy x-ray absorptiometry, bioelectrical impedance, and anthropometry. Am J Clin Nutr 1991, 53(5):1117-1123.
  • [14]Peiris AN, Hennes MI, Evans DJ, Wilson CR, Lee MB, Kissebah AH: Relationship of anthropometric measurements of body fat distribution to metabolic profile in premenopausal women. Acta Med Scand Suppl 1988, 723:179-188.
  • [15]Bergman RN: Toward physiological understanding of glucose tolerance. Minimal-model approach. Diabetes 1989, 38:1512-1527.
  • [16]Rainwater DL, Moore PH Jr, Shelledy WR, Dyer TD, Slifer SH: Characterization of a composite gradient gel for the electrophoretic separation of lipoproteins. J Lipid Res 1997, 38(6):1261-1266.
  • [17]Dupont NC, Wang K, Wadhwa PD, Culhane JF, Nelson EL: Validation and comparison of luminex multiplex cytokine analysis kits with ELISA: determinations of a panel of nine cytokines in clinical sample culture supernatants. J Reprod Immunol 2005, 66(2):175-191.
  • [18]Almasy L, Blangero J: Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 1998, 62(5):1198-1211.
  • [19]Burdick JT, Chen W-M, Abecasis GR, Cheung VG: In silico method for inferring missing genotypes in pedigrees. Nat Genet 2006, 38:1002-1004.
  • [20]Göring HH, Curran JE, Johnson MP, Dyer TD, Charlesworth J, Cole SA, Jowett JBM, Abraham LJ, Rainwater DL, Comuzzie AG, Mahaney MC, Almasy L, MacCluer JW, Kissebah AH, Collier GR, Moses EK, Blangero J: Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat Genet 2007, 39(10):1208-1216.
  • [21]Edgar R, Domrachev M, Lash AE: Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002, 30(1):207-210.
  • [22]Boerwinkle E, Chakraborty R, Sing CF: The use of measured genotype information in the analysis of quantitative phenotypes in man. I. Models and analytical methods. Ann Hum Genet 1986, 50:181-194.
  • [23]Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D: Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006, 38:904-909.
  • [24]Moskvina V, Schmidt KM: On multiple testing correction in genome-wide association studies. Genet Epidemiol 2008, 32:567-573.
  • [25]Whitlock MC: Combining probability from independent tests: the weighted Z-method is superior to Fisher’s approach. J Evol Biol 2005, 18:1368-1373.
  • [26]Zhang Y, Kent JW Jr, Olivier M, Ali O, Broeckel U, Abdou RM, Dyer TD, Comuzzie AE, Curran JE, Carless MA, Rainwater DL, Goring HHH, Blangero J, Kissebah AH: QTL-based association analyses reveal novel genes influencing pleiotropy of Metabolic Syndrome (MetS). Obesity 2013. accepted
  • [27]May Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP): Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA 2001, 285(19):2486-2497.
  • [28]Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC Jr, International Diabetes Federation Task Force on Epidemiology and Prevention; Hational Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity: Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation 2009, 120(16):1640-1645.
  • [29]Ho C, Zhou J, Medina M, Goto T, Jacobson M, Bhide PG, Kosik KS: Delta-catenin is a nervous system-specific adherens junction protein which undergoes dynamic relocalization during development. J Comp Neurol 2000, 420(2):261-276.
  • [30]Zhou J, Liyanage U, Medina M, Ho C, Simmons AD, Lovett M, Kosik KS: Presenilin 1 interaction in the brain with a novel member of the Armadillo family. Neuroreport 1997, 8(8):2085-2090.
  • [31]Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D: The human genome browser at UCSC. Genome Res 2002, 12(6):996-1006.
  • [32]UCSC Genome Database. http://genome.ucsc.edu/ webcite
  • [33]Myers RM, Stamatoyannopoulos J, Snyder M, Dunham I, Hardison RC, Bernstein BE, Gingeras TR, Kent WJ, Birney E, ENCODE Project Consortium: A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol 2011, 9(4):e1001046.
  • [34]Rosenbloom KR, Dreszer TR, Long JC, Malladi VS, Sloan CA, Raney BJ, Cline MS, Karolchik D, Barber GP, Clawson H, Diekhans M, Fujita PA, Goldman M, Gravell RC, Harte RA, Hinrichs AS, Kirkup VM, Kuhn RM, Learned K, Maddren M, Meyer LR, Pohl A, Rhead B, Wong MC, Zweig AS, Haussler D, Kent WJ: ENCODE whole-genome data in the UCSC genome browser: update 2012. Nucleic Acids Res 2011, 40(Database issue):1-6.
  • [35]Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer CJ: LocusZoom: Regional visualization of genome-wide association scan results. Bioinformatics 2010, 26(18):2336-2337.
  • [36]Koh SB, Yoon J, Kim JY, Yoo BS, Lee SH, Park JK, Choe KH: Relationships between serum adiponectin with metabolic syndrome and components of metabolic syndrome in non-diabetic Koreans: ARIRANG study. Yonsei Med J 2011, 52(2):234-241.
  • [37]Patel DA, Srinivasan SR, Xu JH, Chen W, Berenson GS: Adiponectin and its correlates of cardiovascular risk in young adults: the Bogalusa heart study. Metabolism 2006, 55(11):1551-1557.
  • [38]Esposito K, Chiodini P, Colao A, Lenzi A, Giugliano D: Metabolic syndrome and risk of cancer: a systematic review and meta-analysis. Diabetes Care 2012, 35(11):2402-2411.
  • [39]Gene Expression Atlas at the European Bioinformatics Institute. http://www.ebi.ac.uk/gxa/gene/ENSG00000145526?ef=cell_type webcite
  • [40]Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA: Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol 2000, 148(4):779-790.
  • [41]Burke JP, Cunningham MF, Sweeney C, Docherty NG, O’Connell PR: N-cadherin is overexpressed in Crohn‘s stricture fibroblasts and promotes intestinal fibroblast migration. Inflamm Bowel Dis 2011, 17(8):1665-1673.
  • [42]Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA: A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res 2007, 13(23):7003-7011.
  • [43]Tanaka H, Kono E, Tran CP, Miyazaki H, Yamashiro J, Shimomura T, Fazli L, Wada R, Huang J, Vessella RL, An J, Horvath S, Gleave M, Rettig MB, Wainberg ZA, Reiter RE: Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nat Med 2010, 16(12):1414-1420.
  • [44]Kajikawa Y, Ikeda M, Takemoto S, Tomoda J, Ohmaru N, Kusachi S: Association of circulating levels of leptin and adiponectin with metabolic syndrome and coronary heart disease in patients with various coronary risk factors. Int Heart J 2011, 52(1):17-22.
  • [45]Almagro S, Durmort C, Chervin-Pétinot A, Heyraud S, Dubois M, Lambert O, Maillefaud C, Hewat E, Schaal JP, Huber P, Gulino-Debrac D: The motor protein myosin-X transports VE-cadherin along filopodia to allow the formation of early endothelial cell-cell contacts. Mol Cell Biol 2010, 30(7):1703-1717.
  • [46]Arjonen A, Kaukonen R, Ivaska J: Filopodia and adhesion in cancer cell motility. Cell Adh Migr 2011, 5(5):421-430.
  • [47]Michel JJ, Scott JD: AKAP mediated signal transduction. Annu Rev Pharmacol Toxicol 2002, 42:235-257.
  • [48]Kahn BB, Alquier T, Carling D, Hardie DG: AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 2005, 1(1):15-25.
  • [49]Carretero J, Medina PP, Blanco R, Smit L, Tang M, Roncador G, Maestre L, Conde E, Lopez-Rios F, Clevers HC, Sanchez-Cespedes M: Dysfunctional AMPK activity, signalling through mTOR and survival in response to energetic stress in LKB1-deficient lung cancer. Oncogene 2007, 26(11):1616-1625.
  • [50]Motoshima H, Goldstein BJ, Igata M, Araki E: AMPK and cell proliferation–AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol 2006, 574:63-71.
  • [51]Rutter J, Reick M, Wu LC, McKnight SL: Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 2001, 293(5529):510-514.
  • [52]Sha L, Macintyre L, Machell JA, Kelly MP, Porteous DJ, Brandon NJ, Muir WJ, Blackwood DH, Watson DG, Clapcote SJ, Pickard BS: Transcriptional regulation of neurodevelopmental and metabolic pathways by NPAS3. Mol Psychiatry 2012, 17:267-279.
  • [53]Moreira F, Kiehl TR, So K, Ajeawung NF, Honculada C, Gould P, Pieper RO, Kamnasaran D: NPAS3 demonstrates features of a tumor suppressive role in driving the progression of Astrocytomas. Am J Pathol 2011, 179(1):462-476.
  • [54]Charlesworth JC, Curran JE, Johnson MP, Göring HHH, Dyer TD, Diego VP, Kent JW, Mahaney MC, Almasy L, MacCluer JW, Moses EK, Blangero J: Transcriptomic epidemiology of smoking: the effect of smoking on gene expression in lymphocytes. BMC Medical Genomics 2010, 3:29. BioMed Central Full Text
  • [55]Yamaoka M, Maeda N, Nakamura S, Kashine S, Nakagawa Y, Hiuge-Shimizu A, Okita K, Imagawa A, Matsuzawa Y, Matsubara K, Funahashi T, Shimomura I: A pilot investigation of visceral fat adiposity and gene expression profile in peripheral blood cells. PLoS One 2012, 7(10):e47377.
  • [56]Scarpellini E, Tack J: Obesity and metabolic syndrome: an inflammatory condition. Dig Dis 2012, 30(2):148-153.
  • [57]Hotamisligil GS: Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 2010, 140:900-917.
  • [58]Neels JG, Olefsky JM: Inflamed fat: what starts the fire? J Clin Invest 2006, 116:33-35.
  • [59]Morokuma Y, Nakamura N, Kato A, Notoya M, Yamamoto Y, Sakai Y, Fukuda H, Yamashina S, Hirata Y, Hirose S: MARCH-XI, a novel transmembrane ubiquitin ligase implicated in ubiquitin-dependent protein sorting in developing spermatids. J Biol Chem 2007, 282(34):24806-24815.
  • [60]Cenciarelli C, Chiaur DS, Guardavaccaro D, Parks W, Vidal M, Pagano M: Identification of a family of human F-box proteins. Curr Biol 1999, 9(20):1177-1179.
  • [61]Manning AK, Hivert MF, Scott RA, Grimsby JL, Bouatia-Naji N, Chen H, Rybin D, Liu CT, Bielak LF, Prokopenko I, Amin N, Barnes D, Cadby G, Hottenga JJ, Ingelsson E, Jackson AU, Johnson T, Kanoni S, Ladenvall C, Lagou V, Lahti J, Lecoeur C, Liu Y, Martinez-Larrad MT, Montasser ME, Navarro P, Perry JR, Rasmussen-Torvik LJ, Salo P, Sattar N: A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet 2012, 44(6):659-669.
  • [62]Aslibekyan S, Kabagambe EK, Irvin MR, Straka RJ, Borecki IB, Tiwari HK, Tsai MY, Hopkins PN, Shen J, Lai CQ, Ordovas JM, Arnett DK: A genome-wide association study of inflammatory biomarker changes in response to fenofibrate treatment in the genetics of lipid lowering drug and diet network. Pharmacogenet Genomics 2012, 22(3):191-197.
  • [63]Fox CS, Liu Y, White CC, Feitosa M, Smith AV, Heard-Costa N, Lohman K, Johnson AD, Foster MC, Greenawalt DM, Griffin P, Ding J, Newman AB, Tylavsky F, Miljkovic I, Kritchevsky SB, Launer L, Garcia M, Eiriksdottir G, Carr JJ, Gudnason V, Harris TB, Cupples LA, Borecki IB, GIANT Consortium; MAGIC Consortium; GLGC Consortium: Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women. PLoS Genet 2012, 8(5):e1002695.
  • [64]Wang KS, Liu X, Zheng S, Zeng M, Pan Y, Callahan K: A novel locus for body mass index on 5p15.2: a meta-analysis of two genome-wide association studies. Gene 2012, 500(1):80-84.
  • [65]Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, Lango Allen H, Lindgren CM, Luan J, Mägi R, Randall JC, Vedantam S, Winkler TW, Qi L, Workalemahu T, Heid IM, Steinthorsdottir V, Stringham HM, Weedon MN, Wheeler E, Wood AR, Ferreira T, Weyant RJ, Segrè AV, Estrada K, Liang L, Nemesh J, Park JH, Gustafsson S, Kilpeläinen TO: Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 2010, 42(11):937-948.
  文献评价指标  
  下载次数:30次 浏览次数:5次