| BMC Evolutionary Biology | |
| Accurate discrimination of bHLH domains in plants, animals, and fungi using biologically meaningful sites | |
| Ralph A Dean1  Joshua K Sailsbery2  | |
| [1] Centennial Campus, Center for Integrated Fungal Research, North Carolina State University, 851 Main Campus Drive, Suite 233, Raleigh, NC, 27606, USA;Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27606, USA | |
| 关键词: Variable sites; Conserved sites; Discerning sites; HMM; Environmental sequencing; Fungi; Animals; Plants; Classification; Discriminant analysis; bHLH; | |
| Others : 1140436 DOI : 10.1186/1471-2148-12-154 |
|
| received in 2012-01-03, accepted in 2012-07-26, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Background
The highly conserved bHLH (basic Helix-Loop-Helix) domain, found in many transcription factors, has been well characterized separately in Plants, Animals, and Fungi. While conserved, even functionally constrained sites have varied since the Eukarya split. Our research identifies those slightly variable sites that were highly characteristic of Plants, Animals, or Fungi.
Results
Through discriminant analysis, we identified five highly discerning DNA-binding amino acid sites. Additionally, by incorporating Kingdom specific HMMs, we were able to construct a tool to quickly and accurately identify and classify bHLH sequences using these sites.
Conclusions
We conclude that highly discerning sites identified through our analysis were likely under functional constraints specific to each Kingdom. We also demonstrated the utility of our tool by identifying and classifying previously unknown bHLH domains in both characterized genomes and from sequences in a large environmental sample.
【 授权许可】
2012 Sailsbery and Dean; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150325021735716.pdf | 1891KB | ||
| Figure 3. | 89KB | Image | |
| Figure 3. | 118KB | Image | |
| Figure 2. | 73KB | Image | |
| Figure 1. | 68KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 3.
【 参考文献 】
- [1]Massari ME, Murre C: Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 2000, 20:429-440.
- [2]Jones S: An overview of the basic helix-loop-helix proteins. Genome Biol 2004, 5:226. BioMed Central Full Text
- [3]Amoutzias GD, Robertson DL, Bornberg-Bauer E: The evolution of protein interaction networks in regulatory proteins. Comp Funct Genomics 2004, 5:79-84.
- [4]Amoutzias GD, Robertson DL, Van de Peer Y, Oliver SG: Choose your partners: dimerization in eukaryotic transcription factors. Trends Biochem Sci 2008, 33:220-229.
- [5]Castillon A, Shen H, Huq E: Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci 2007, 12:514-521.
- [6]Ma PC, Rould MA, Weintraub H, Pabo CO: Crystal structure of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcriptional activation. Cell 1994, 77:451-459.
- [7]Shimizu T, Toumoto A, Ihara K, Shimizu M, Kyogoku Y, Ogawa N, Oshima Y, Hakoshima T: Crystal structure of PHO4 bHLH domain-DNA complex: flanking base recognition. EMBO J 1997, 16:4689-4697.
- [8]Atchley WR, Terhalle W, Dress A: Positional dependence, cliques, and predictive motifs in the bHLH protein domain. J Mol Evol 1999, 48:501-516.
- [9]Ledent V, Vervoort M: The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Res 2001, 11:754-770.
- [10]Atchley WR, Fitch WM: A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci USA 1997, 94:5172-5176.
- [11]Pires N, Dolan L: Origin and diversification of Basic-Helix-Loop-Helix proteins in plants. Mol Biol Evol 2009, 27:862-874.
- [12]Fairman R, Beran-Steed RK, Anthony-Cahill SJ, Lear JD, Stafford WF 3rd, DeGrado WF, Benfield PA, Brenner SL: Multiple oligomeric states regulate the DNA binding of helix-loop-helix peptides. Proc Natl Acad Sci USA 1993, 90:10429-10433.
- [13]Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martinez-Garcia JF, Bilbao-Castro JR, Robertson DL: Genome-wide classification and evolutionary analysis of the bHLH Family of transcription factors in arabidopsis, poplar, rice, moss, and algae. Plant Physiol 2010, 153:1398.
- [14]Ni M, Tepperman JM, Quail PH: PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 1998, 95:657-667.
- [15]Friedrichsen DM, Nemhauser J, Muramitsu T, Maloof JN, Alonso J, Ecker JR, Furuya M, Chory J: Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics 2002, 162:1445-1456.
- [16]Liljegren SJ, Roeder AHK, Kempin SA, Gremski K, Østergaard L, Guimil S, Reyes DK, Yanofsky MF: Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 2004, 116:843-853.
- [17]Menand B, Yi K, Jouannic S, Hoffmann L, Ryan E, Linstead P, Schaefer DG, Dolan L: An ancient mechanism controls the development of cells with a rooting function in land plants. Science 2007, 316:1477-1480.
- [18]Buck MJ, Atchley WR: Phylogenetic analysis of plant basic Helix-Loop-Helix proteins. J Mol Evol 2003, 56:742-750.
- [19]Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC: The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 2003, 20:735-747.
- [20]Sailsbery J, Atchley W, Dean D: Phylogenetic analysis and classification of the fungal bHLH domain. Mol Biol Evol 2012, 29:1301-1318.
- [21]Atchley WR, Zhao J, Fernandes AD, Drüke T: Solving the protein sequence metric problem. Proc Natl Acad Sci USA 2005, 102:6395-6400.
- [22]Johnson RA, Wichern DW: Applied Multivariate Statistical Analysis. 5th edition. Upper Saddle River, New Jersey: Prentice Hall; 2001.
- [23]Atchley WR, Zhao J: Molecular architecture of the DNA-binding region and its relationship to classification of basic Helix–Loop–Helix proteins. Mol Biol Evol 2007, 24:192.
- [24]Atchley WR, Wollenberg KR, Fitch WM, Terhalle W, Dress AW: Correlations among amino acid sites in bHLH protein domains: an information theoretic analysis. Mol Biol Evol 2000, 17:164-178.
- [25]Wollenberg KR, Atchley WR: Separation of phylogenetic and functional associations in biological sequences by using the parametric bootstrap. Proc Natl Acad Sci USA 2000, 97:3288-3291.
- [26]Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo generator. Genome Res 2004, 14:1188.
- [27]Breiman L, Friedman J, Stone CJ, Olshen RA: 1st. 1st edition. Chapman and Hall/CRC; 1984.
- [28]Campbell NA, Atchley WR: The geometry of canonical variate analysis. Syst Biol 1981, 30:268-280.
- [29]Fisher RA: The use of multiple measurements in taxonomic problems. Ann Eugen 1936, 7:179-188.
- [30]Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, Roger AJ, Gray MW: The tree of eukaryotes. Trends Ecol Evol (Amst) 2005, 20:670-676.
- [31]Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers Y-H, Smith HO: Environmental genome shotgun sequencing of the Sargasso Sea. Science 2004, 304:66-74.
- [32]Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R: InterProScan: protein domains identifier. Nucleic Acids Res 2005, 33:W116-W120.
- [33]Ellenberger T, Fass D, Arnaud M, Harrison SC: Crystal structure of transcription factor E47: E-box recognition by a basic region helix-loop-helix dimer. Genes Dev 1994, 8:970-980.
- [34]Ferré-D’Amaré AR, Prendergast GC, Ziff EB, Burley SK: Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 1993, 363:38-45.
- [35]Brownlie P, Ceska T, Lamers M, Romier C, Stier G, Teo H, Suck D: The crystal structure of an intact human Max-DNA complex: new insights into mechanisms of transcriptional control. Structure 1997, 5:509-520.
- [36]Párraga A, Bellsolell L, Ferré-D’Amaré AR, Burley SK: Co-crystal structure of sterol regulatory element binding protein 1a at 2.3 A resolution. Structure 1998, 6:661-672.
- [37]Ferré-D’Amaré AR, Pognonec P, Roeder RG, Burley SK: Structure and function of the b/HLH/Z domain of USF. EMBO J 1994, 13:180-189.
- [38]Jones EBG: Marine fungi: some factors influencing biodiversity. Fungal Divers 2000, 4:53-73.
- [39]Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF, Selengut JD, Sigrist CJA, Thimma M, Thomas PD, Valentin F, Wilson D, Wu CH, Yeats C: InterPro: the integrative protein signature database. Nucleic Acids Res 2009, 37:D211-D215.
- [40]Atchley WR, Fernandes AD: Sequence signatures and the probabilistic identification of proteins in the Myc-Max-Mad network. Proc Natl Acad Sci USA 2005, 102:6401.
- [41]Wang Z, Atchley WR: Spectral analysis of sequence variability in basic-helix-loop-helix (bHLH) protein domains. Evol Bioinform Online 2006, 2:187-196.
- [42]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
- [43]HDMD: Statistical Analysis Tools for High Dimension Molecular Data. http://cran.r-project.org/web/packages/HDMD/ webcite
- [44]R Development Core Team: {R: A language and environment for statistical computing}. Vienna, Austria: R Foundation for Statistical Computing; 2009.
- [45]Eddy SR: Profile hidden Markov models. Bioinformatics 1998, 14:755-763.
- [46]Bateman A, Birney E, Durbin R, Eddy SR, Finn RD, Sonnhammer EL: Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins. Nucleic Acids Res 1999, 27:260-262.
- [47]Rifkin R, Klautau A: In defense of one-vs-all classification. J Mach Learn Res 2004, 5:101-141.
PDF