期刊论文详细信息
BMC Microbiology
Adaptive mechanisms of Campylobacter jejuni to erythromycin treatment
Qijing Zhang3  Peng Liu1  Zuowei Wu3  Hongning Wang2  Orhan Sahin3  Zhangqi Shen3  Wayne T Muraoka3  Qingqing Xia3 
[1]Department of Statistics, Iowa State University, Ames, IA, 50011, USA
[2]Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, “985”Project Science Innovative Platform for Resource and Environment Protection of Southwestern, Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, School of Life Science, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
[3]Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
关键词: Campylobacter;    Macrolide;    Transcriptome;    Microarray;    Adaptation;   
Others  :  1143624
DOI  :  10.1186/1471-2180-13-133
 received in 2013-01-18, accepted in 2013-06-10,  发布年份 2013
PDF
【 摘 要 】

Background

Macrolide is the drug of choice to treat human campylobacteriosis, but Campylobacter resistance to this antibiotic is rising. The mechanisms employed by Campylobacter jejuni to adapt to erythromycin treatment remain unknown and are examined in this study. The transcriptomic response of C. jejuni NCTC 11168 to erythromycin (Ery) treatment was determined by competitive microarray hybridizations. Representative genes identified to be differentially expressed were further characterized by constructing mutants and assessing their involvement in antimicrobial susceptibility, oxidative stress tolerance, and chicken colonization.

Results

Following the treatment with an inhibitory dose of Ery, 139 genes were up-regulated and 119 were down-regulated. Many genes associated with flagellar biosynthesis and motility was up-regulated, while many genes involved in tricarboxylic acid cycle, electron transport, and ribonucleotide biosynthesis were down-regulated. Exposure to a sub-inhibitory dose of Ery resulted in differential expression of much fewer genes. Interestingly, two putative drug efflux operons (cj0309c-cj0310c and cj1173-cj1174) were up-regulated. Although mutation of the two operons did not alter the susceptibility of C. jejuni to antimicrobials, it reduced Campylobacter growth under high-level oxygen. Another notable finding is the consistent up-regulation of cj1169c-cj1170c, of which cj1170c encodes a known phosphokinase, an important regulatory protein in C. jejuni. Mutation of the cj1169c-cj1170c rendered C. jejuni less tolerant to atmospheric oxygen and reduced Campylobacter colonization and transmission in chickens.

Conclusions

These findings indicate that Ery treatment elicits a range of changes in C. jejuni transcriptome and affects the expression of genes important for in vitro and in vivo adaptation. Up-regulation of motility and down-regulation of energy metabolism likely facilitate Campylobacter to survive during Ery treatment. These findings provide new insight into Campylobacter adaptive response to antibiotic treatment and may help to understand the mechanisms underlying antibiotic resistance development.

【 授权许可】

   
2013 Xia et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329143204674.pdf 922KB PDF download
Figure 4. 75KB Image download
Figure 3. 60KB Image download
Figure 2. 45KB Image download
Figure 1. 35KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Jorgensen F, Ellis-Iversen J, Rushton S, Bull SA, Harris SA, Bryan SJ, Gonzalez A, Humphrey TJ: Influence of season and geography on Campylobacter jejuni and C. coli subtypes in housed broiler flocks reared in Great Britain. Appl Environ Microbiol 2011, 77(11):3741-3748.
  • [2]Chen J, Sun XT, Zeng Z, Yu YY: Campylobacter enteritis in adult patients with acute diarrhea from, 2005 to 2009 in Beijing, China. Chin Med J (Engl) 2011, 124(10):1508-1512.
  • [3]Koga M, Gilbert M, Takahashi M, Li J, Koike S, Hirata K, Yuki N: Comprehensive analysis of bacterial risk factors for the development of Guillain-Barre syndrome after Campylobacter jejuni enteritis. J Infect Dis 2006, 193(4):547-555.
  • [4]Skirrow MBM: Clinical aspects of Campylobacter infection. 2nd edition. Washington, DC: ASM Press; 2000.
  • [5]Engberg J, Aarestrup FM, Taylor DE, Gerner-Smidt P, Nachamkin I: Quinolone and macrolide resistance in Campylobacter jejuni and C. coli: resistance mechanisms and trends in human isolates. Emerg Infect Dis 2001, 7(1):24-34.
  • [6]Gibreel A, Taylor DE: Macrolide resistance in Campylobacter jejuni and Campylobacter coli. J Antimicrob Chemother 2006, 58(2):243-255.
  • [7]Poehlsgaard J, Douthwaite S: The bacterial ribosome as a target for antibiotics. Nat Rev Microbiol 2005, 3(11):870-881.
  • [8]Brisson-Noel A, Trieu-Cuot P, Courvalin P: Mechanism of action of spiramycin and other macrolides. J Antimicrob Chemother 1988, 22(Suppl B):13-23.
  • [9]Anadon A, Reeve-johnson L: Macrolide antibiotics, drug interactions and microsomal enzymes: implications for veterinary medicine. Res Vet Sci 1999, 66(3):197-203.
  • [10]Hao H, Dai M, Wang Y, Peng D, Liu Z, Yuan Z: 23S rRNA mutation A2074C conferring high-level macrolide resistance and fitness cost in Campylobacter jejuni. Microb Drug Resist 2009, 15(4):239-244.
  • [11]Guo B, Wang Y, Shi F, Barton YW, Plummer P, Reynolds DL, Nettleton D, Grinnage-Pulley T, Lin J, Zhang Q: CmeR functions as a pleiotropic regulator and is required for optimal colonization of Campylobacter jejuni in vivo. J Bacteriol 2008, 190(6):1879-1890.
  • [12]Ng WL, Kazmierczak KM, Robertson GT, Gilmour R, Winkler ME: Transcriptional regulation and signature patterns revealed by microarray analyses of Streptococcus pneumoniae R6 challenged with sublethal concentrations of translation inhibitors. J Bacteriol 2003, 185(1):359-370.
  • [13]VanBogelen RA, Neidhardt FC: Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc Natl Acad Sci USA 1990, 87(15):5589-5593.
  • [14]Evers S, Di Padova K, Meyer M, Langen H, Fountoulakis M, Keck W, Gray CP: Mechanism-related changes in the gene transcription and protein synthesis patterns of Haemophilus influenzae after treatment with transcriptional and translational inhibitors. Proteomics 2001, 1(4):522-544.
  • [15]Qiu J, Zhou D, Qin L, Han Y, Wang X, Du Z, Song Y, Yang R: Microarray expression profiling of Yersinia pestis in response to chloramphenicol. FEMS Microbiol Lett 2006, 263(1):26-31.
  • [16]Reiss S, Pane-Farre J, Fuchs S, Francois P, Liebeke M, Schrenzel J, Lindequist U, Lalk M, Wolz C, Hecker M, et al.: Global analysis of the Staphylococcus aureus response to mupirocin. Antimicrob Agents Chemother 2012, 56(2):787-804.
  • [17]Kaldalu N, Mei R, Lewis K: Killing by ampicillin and ofloxacin induces overlapping changes in Escherichia coli transcription profile. Antimicrob Agents Chemother 2004, 48(3):890-896.
  • [18]Han J, Sahin O, Barton YW, Zhang Q: Key role of Mfd in the development of fluoroquinolone resistance in Campylobacter jejuni. PLoS Pathog 2008, 4(6):e1000083.
  • [19]Tareen AM, Dasti JI, Zautner AE, Gross U, Lugert R: Campylobacter jejuni proteins Cj0952c and Cj0951c affect chemotactic behaviour towards formic acid and are important for invasion of host cells. Microbiology 2010, 156(Pt 10):3123-3135.
  • [20]Lin J, Yan M, Sahin O, Pereira S, Chang YJ, Zhang Q: Effect of macrolide usage on emergence of erythromycin-resistant Campylobacter isolates in chickens. Antimicrob Agents Chemother 2007, 51(5):1678-1686.
  • [21]Bay DC, Rommens KL, Turner RJ: Small multidrug resistance proteins: a multidrug transporter family that continues to grow. Biochim Biophys Acta 2008, 1778(9):1814-1838.
  • [22]Bay DC, Turner RJ: Diversity and evolution of the small multidrug resistance protein family. BMC Evol Biol 2009, 9:140. BioMed Central Full Text
  • [23]Bolla JM, De E, Dorez A, Pages JM: Purification, characterization and sequence analysis of Omp50, a new porin isolated from Campylobacter jejuni. Biochem J 2000, 352(Pt 3):637-643.
  • [24]Corcionivoschi N, Alvarez LA, Sharp TH, Strengert M, Alemka A, Mantell J, Verkade P, Knaus UG, Bourke B: Mucosal reactive oxygen species decrease virulence by disrupting Campylobacter jejuni phosphotyrosine signaling. Cell Host Microbe 2012, 12(1):47-59.
  • [25]Jagannathan A, Constantinidou C, Penn CW: Roles of rpoN, fliA, and flgR in expression of flagella in Campylobacter jejuni. J Bacteriol 2001, 183(9):2937-2942.
  • [26]Yokoyama T, Paek S, Ewing CP, Guerry P, Yeo HJ: Structure of a sigma28-regulated nonflagellar virulence protein from Campylobacter jejuni. J Mol Biol 2008, 384(2):364-376.
  • [27]Allen KJ, Griffiths MW: Effect of environmental and chemotactic stimuli on the activity of the Campylobacter jejuni flaA sigma(28) promoter. FEMS Microbiol Lett 2001, 205(1):43-48.
  • [28]Ganas P, Mihasan M, Igloi GL, Brandsch R: A two-component small multidrug resistance pump functions as a metabolic valve during nicotine catabolism by Arthrobacter nicotinovorans. Microbiology 2007, 153(Pt 5):1546-1555.
  • [29]Higashi K, Ishigure H, Demizu R, Uemura T, Nishino K, Yamaguchi A, Kashiwagi K, Igarashi K: Identification of a spermidine excretion protein complex (MdtJI) in Escherichia coli. J Bacteriol 2008, 190(3):872-878.
  • [30]Kaakoush NO, Miller WG, De Reuse H, Mendz GL: Oxygen requirement and tolerance of Campylobacter jejuni. Res Microbiol 2007, 158(8–9):644-650.
  • [31]Woodall CA, Jones MA, Barrow PA, Hinds J, Marsden GL, Kelly DJ, Dorrell N, Wren BW, Maskell DJ: Campylobacter jejuni gene expression in the chick cecum: evidence for adaptation to a low-oxygen environment. Infect Immun 2005, 73(8):5278-5285.
  • [32]Dedieu L, Pages JM, Bolla JM: Use of the omp50 gene for identification of Campylobacter species by PCR. J Clin Microbiol 2004, 42(5):2301-2305.
  • [33]Dedieu L, Pages JM, Bolla JM: Environmental regulation of Campylobacter jejuni major outer membrane protein porin expression in Escherichia coli monitored by using green fluorescent protein. Appl Environ Microbiol 2002, 68(9):4209-4215.
  • [34]Dedieu L, Pages JM, Bolla JM: The omp50 gene is transcriptionally controlled by a temperature-dependent mechanism conserved among thermophilic Campylobacter species. Res Microbiol 2008, 159(4):270-278.
  • [35]Lin J, Michel LO, Zhang Q: CmeABC functions as a multidrug efflux system in Campylobacter jejuni. Antimicrob Agents Chemother 2002, 46(7):2124-2131.
  • [36]Luangtongkum T, Shen Z, Seng VW, Sahin O, Jeon B, Liu P, Zhang Q: Impaired fitness and transmission of macrolide-resistant Campylobacter jejuni in its natural host. Antimicrob Agents Chemother 2012, 56(3):1300-1308.
  • [37]Muraoka WT, Zhang Q: Phenotypic and genotypic evidence for L-fucose utilization by Campylobacter jejuni. J Bacteriol 2011, 193(5):1065-1075.
  • [38]Guo B, Lin J, Reynolds DL, Zhang Q: Contribution of the multidrug efflux transporter CmeABC to antibiotic resistance in different Campylobacter species. Foodborne Pathog Dis 2010, 7(1):77-83.
  • [39]Wang Y, Taylor DE: Natural transformation in Campylobacter species. J Bacteriol 1990, 172(2):949-955.
  • [40]Karlyshev AV, Wren BW: Development and application of an insertional system for gene delivery and expression in Campylobacter jejuni. Appl Environ Microbiol 2005, 71(7):4004-4013.
  • [41]Flint A, Sun YQ, Stintzi A: Cj1386 is an ankyrin-containing protein involved in heme trafficking to catalase in Campylobacter jejuni. J Bacteriol 2012, 194(2):334-345.
  • [42]Tal N, Schuldiner S: A coordinated network of transporters with overlapping specificities provides a robust survival strategy. Proc Natl Acad Sci USA 2009, 106(22):9051-9056.
  文献评价指标  
  下载次数:13次 浏览次数:14次