期刊论文详细信息
BMC Genetics
Evolutionary study of the isoflavonoid pathway based on multiple copies analysis in soybean
Deyue Yu2  Qing Yang1  Hao Cheng2  Jiao Wang2  Shanshan Chu2 
[1] College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, People's Republic of China;National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang 1, Nanjing 210095, People's Republic of China
关键词: Soybean;    Multiple copies;    Evolution divergence;    Duplication pattern;    Isoflavonoid phytoalexin pathway;   
Others  :  865777
DOI  :  10.1186/1471-2156-15-76
 received in 2013-12-17, accepted in 2014-06-20,  发布年份 2014
PDF
【 摘 要 】

Background

Previous studies suggest that the metabolic pathway structure influences the selection and evolution rates of involved genes. However, most of these studies have exclusively considered a single gene copy encoding each enzyme in the metabolic pathway. Considering multiple-copy encoding enzymes could provide direct evidence of gene evolution and duplication patterns in metabolic pathways. We conducted a detailed analysis of the phylogeny, synteny, evolutionary rate and selection pressure of the genes in the isoflavonoid metabolic pathway of soybeans.

Results

The results revealed that 1) only the phenylalanine ammonia-lyase (PAL) gene family most upstream from the pathway preserved all of the ancient and recent segmental duplications and maintained a strongly conserved synteny among these duplicated segments; gene families encoding branch-point enzymes with higher pleiotropy tended to retain more types of duplication; and genes encoding chalcone reductase (CHR) and isoflavone synthase (IFS) specific for legumes retained only recent segmental duplications; 2) downstream genes evolved faster than upstream genes and were subject to positive selection or relaxed selection constraints; 3) gene members encoding enzymes with high pleiotropy at the branching points were more likely to have undergone evolutionary differentiation, which may correspond to their functional divergences.

Conclusions

We reconciled our results with existing controversies and proposed that gene copies at branch points with higher connectivity might be under stronger selective constraints and that the gene copies controlling metabolic flux allocation underwent positive selection. Our analyses demonstrated that the structure and function of a metabolic pathway shapes gene duplication and the evolutionary constraints of constituent enzymes.

【 授权许可】

   
2014 Chu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140726091258416.pdf 1542KB PDF download
200KB Image download
160KB Image download
75KB Image download
【 图 表 】

【 参考文献 】
  • [1]Wang XQ: Structure, function, and engineering of enzymes in isoflavonoid biosynthesis. Funct Integr Genomic 2011, 11(1):13-22.
  • [2]Dixon RA, Harrison MJ, Paiva NL: The isoflavonoid phytoalexin pathway - from enzymes to genes to transcription factors. Physiol Plantarum 1995, 93(2):385-392.
  • [3]Winkel-Shirley B: Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 2001, 126(2):485-493.
  • [4]Mudge J, Cannon SB, Kalo P, Oldroyd GE, Roe BA, Town CD, Young ND: Highly syntenic regions in the genomes of soybean, Medicago truncatula, and Arabidopsis thaliana. BMC Plant Biol 2005, 5:14.
  • [5]Yan HH, Mudge J, Kim DJ, Shoemaker RC, Cook DR, Young ND: Comparative physical mapping reveals features of microsynteny between Glycine max, Medicago truncatula, and Arabidopsis thaliana. Genome 2004, 47(1):141-155.
  • [6]Lee JM, Bush AL, Specht JE, Shoemaker RC: Mapping of duplicate genes in soybean. Genome 1999, 42(5):829-836.
  • [7]Pfeil BE, Schlueter JA, Shoemaker RC, Doyle JJ: Placing paleopolyploidy in relation to taxon divergence: a phylogenetic analysis in legumes using 39 gene families. Syst Biol 2005, 54(3):441-454.
  • [8]Fawcett JA, Maere S, Van de Peer Y: Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc Natl Acad Sci U S A 2009, 106(14):5737-5742.
  • [9]Shoemaker RC, Schlueter J, Doyle JJ: Paleopolyploidy and gene duplication in soybean and other legumes. Curr Opin Plant Biol 2006, 9(2):104-109.
  • [10]Doyle JJ, Egan AN: Dating the origins of polyploidy events. New Phytol 2010, 186(1):73-85.
  • [11]Schlueter JA, Dixon P, Granger C, Grant D, Clark L, Doyle JJ, Shoemaker RC: Mining EST databases to resolve evolutionary events in major crop species. Genome 2004, 47(5):868-876.
  • [12]Schmutz J, Cannon SB, Schlueter J, Ma JX, Mitros T, Nelson W, Hyten DL, Song QJ, Thelen JJ, Cheng JL, Xu D, Hellsten U, May GD, Yu YS, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu SQ, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du JC, Tian ZX, Zhu LC, et al.: Genome sequence of the palaeopolyploid soybean. Nature 2010, 463(7278):178-183.
  • [13]Shoemaker RC, Polzin K, Labate J, Specht J, Brummer EC, Olson T, Young N, Concibido V, Wilcox J, Tamulonis JP, Kochert G, Boerma HR: Genome duplication in soybean (Glycine subgenus soja). Genetics 1996, 144(1):329-338.
  • [14]Gill N, Findley S, Walling JG, Hans C, Ma JX, Doyle J, Stacey G, Jackson SA: Molecular and chromosomal evidence for allopolyploidy in soybean. Plant Physiol 2009, 151(3):1167-1174.
  • [15]Vitkup D, Kharchenko P, Wagner A: Influence of metabolic network structure and function on enzyme evolution. Genome Biol 2006, 7(5):R39.
  • [16]Cork JM, Purugganan MD: The evolution of molecular genetic pathways and networks. Bioessays 2004, 26(5):479-484.
  • [17]Wright KM, Rausher MD: The evolution of control and distribution of adaptive mutations in a metabolic pathway. Genetics 2010, 184(2):483-U261.
  • [18]Ramsay H, Rieseberg LH, Ritland K: The correlation of evolutionary rate with pathway position in plant terpenoid biosynthesis. Mol Biol Evol 2009, 26(5):1045-1053.
  • [19]Rausher MD, Miller RE, Tiffin P: Patterns of evolutionary rate variation among genes of the anthocyanin biosynthetic pathway. Mol Biol Evol 1999, 16(2):266-274.
  • [20]Lu YQ, Rausher MD: Evolutionary rate variation in anthocyanin pathway genes. Mol Biol Evol 2003, 20(11):1844-1853.
  • [21]Rausher MD, Lu YQ, Meyer K: Variation in constraint versus positive selection as an explanation for evolutionary rate variation among anthocyanin genes. J Mol Evol 2008, 67(2):137-144.
  • [22]Clotault J, Peltier D, Soufflet-Freslon V, Briard M, Geoffriau E: Differential selection on carotenoid biosynthesis genes as a function of gene position in the metabolic pathway: a study on the carrot and dicots. PLoS One 2012, 7(6):e38724.
  • [23]Ramos-Onsins SE, Puerma E, Balana-Alcaide D, Salguero D, Aguade M: Multilocus analysis of variation using a large empirical data set: phenylpropanoid pathway genes in Arabidopsis thaliana. Mol Ecol 2008, 17(5):1211-1223.
  • [24]Yang YH, Zhang FM, Ge S: Evolutionary rate patterns of the Gibberellin pathway genes. BMC Evol Biol 2009, 9:206.
  • [25]Yu G, Olsen KM, Schaal BA: Molecular evolution of the endosperm starch synthesis pathway genes in rice (Oryza sativa L.) and its wild ancestor, O. rufipogon L. Mol Biol Evol 2011, 28(1):659-671.
  • [26]Rausher MD: The evolution of genes in branched metabolic pathways. Evolution 2013, 67(1):34-48.
  • [27]Flowers JM, Sezgin E, Kumagai S, Duvernell DD, Matzkin LM, Schmidt PS, Eanes WF: Adaptive evolution of metabolic pathways in Drosophila. Mol Biol Evol 2007, 24(6):1347-1354.
  • [28]Whitt SR, Wilson LM, Tenaillon MI, Gaut BS, Buckler ES: Genetic diversity and selection in the maize starch pathway. Proc Natl Acad Sci U S A 2002, 99(20):12959-12962.
  • [29]Moore RC, Purugganan MD: The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 2005, 8(2):122-128.
  • [30]Cusack BP, Wolfe KH: When gene marriages don’t work out: divorce by subfunctionalization. Trends Genet 2007, 23(6):270-272.
  • [31]Blanc G, Wolfe KH: Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 2004, 16(7):1679-1691.
  • [32]Lindermayr C, Mollers B, Fliegmann J, Uhlmann A, Lottspeich F, Meimberg H, Ebel J: Divergent members of a soybean (Glycine max L.) 4-coumarate : coenzyme A ligase gene family - primary structures, catalytic properties, and differential expression. Eur J Biochem 2002, 269(4):1304-1315.
  • [33]Ralston L, Subramanian S, Matsuno M, Yu O: Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases. Plant Physiol 2005, 137(4):1375-1388.
  • [34]Lavin M, Herendeen PS, Wojciechowski MF: Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst Biol 2005, 54(4):575-594.
  • [35]Cheng H, Wang J, Chu SS, Yan HL, Yu DY: Diversifying selection on flavanone 3-hydroxylase and isoflavone synthase genes in cultivated soybean and its wild progenitors. PLoS One 2013, 8(1):e54154.
  • [36]Yang ZH: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24(8):1586-1591.
  • [37]Deavours BE, Liu CJ, Naoumkina MA, Tang YH, Farag MA, Sumner LW, Noel JP, Dixon RA: Functional analysis of members of the isoflavone and isoflavanone O-methyltransferase enzyme families from the model legume Medicago truncatula. Plant Mol Biol 2006, 62(4–5):715-733.
  • [38]Olson-Manning CF, Lee CR, Rausher MD, Mitchell-Olds T: Evolution of flux control in the glucosinolate pathway in Arabidopsis thaliana. Mol Biol Evol 2013, 30(1):14-23.
  • [39]Dhaubhadel S, Gijzen M, Moy P, Farhangkhoee M: Transcriptome analysis reveals a critical role of CHS7 and CHS8 genes for isoflavonoid synthesis in soybean seeds. Plant Physiol 2007, 143(1):326-338.
  • [40]Dall’Olio GM, Laayouni H, Luisi P, Sikora M, Montanucci L, Bertranpetit J: Distribution of events of positive selection and population differentiation in a metabolic pathway: the case of asparagine N-glycosylation. BMC Evol Biol 2012, 12:98.
  • [41]Yu O, McGonigle B: Metabolic engineering of isoflavone biosynthesis. Adv Agron 2005, 86:147-190.
  • [42]Jung W, Yu O, Lau SMC, O’Keefe DP, Odell J, Fader G, McGonigle B: Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes (vol 18, pg 211, 2000). Nat Biotechnol 2000, 18(5):559-559.
  • [43]Zhang JM, Dean AM, Brunet F, Long MY: Evolving protein functional diversity in new genes of Drosophila. Proc Natl Acad Sci U S A 2004, 101(46):16246-16250.
  • [44]Civetta A: Positive selection within sperm-egg adhesion domains of fertilin: An ADAM gene with a potential role in fertilization. Mol Biol Evol 2003, 20(1):21-29.
  • [45]Johnson ME, Viggiano L, Bailey JA, Abdul-Rauf M, Goodwin G, Rocchi M, Eichler EE: Positive selection of a gene family during the emergence of humans and African apes. Nature 2001, 413(6855):514-519.
  • [46]Kondrashov FA, Rogozin IB, Wolf YI, Koonin EV: Selection in the evolution of gene duplications. Genome Biol 2002, 3(2):RESEARCH0008.
  • [47]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
  • [48]Thompson JD, Higgins DG, Gibson TJ: Clustal-W - improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22(22):4673-4680.
  • [49]Tang HB, Bowers JE, Wang XY, Ming R, Alam M, Paterson AH: Perspective - Synteny and collinearity in plant genomes. Science 2008, 320(5875):486-488.
  • [50]Suyama M, Torrents D, Bork P: PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 2006, 34:W609-W612.
  • [51]Lynch M, Conery JS: The evolutionary fate and consequences of duplicate genes. Science 2000, 290(5494):1151-1155.
  • [52]Cheng H, Yu O, Yu DY: Polymorphisms of IFS1 and IFS2 gene are associated with isoflavone concentrations in soybean seeds. Plant Sci 2008, 175(4):505-512.
  • [53]Lam HM, Xu X, Liu X, Chen WB, Yang GH, Wong FL, Li MW, He WM, Qin N, Wang B, Li J, Jian M, Wang JA, Shao GH, Wang J, Sun SSM, Zhang GY: Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 2010, 42(12):1053-U1041.
  • [54]Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25(11):1451-1452.
  文献评价指标  
  下载次数:53次 浏览次数:23次