期刊论文详细信息
BMC Genetics
Identification of single nucleotide polymorphisms in Toll-like receptor candidate genes associated with tuberculosis infection in water buffalo (Bubalus bubalis)
Giorgio Galiero4  Pier Luigi Acutis2  Paolo Pasquali3  Amalia Barone1  Michela Tarantino3  Rosanna Desiato2  Maria Grazia Maniaci2  Giovanna Urciuolo4  Giorgia Borriello4  Maria Gabriella Lucibelli4  Simone Peletto2  Flora Alfano4 
[1] Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Via Università 100, Portici, 80055, Italy;Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, Via Bologna, 148, Torino, 10154, Italy;Istituto Superiore di Sanità, Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Viale Regina Elena, 299, Roma, 00161, Italy;Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, Portici, Italy
关键词: Case–control study;    Genetic resistance;    TLRs;    Bubalus bubalis;   
Others  :  1085048
DOI  :  10.1186/s12863-014-0139-y
 received in 2014-03-12, accepted in 2014-11-27,  发布年份 2014
PDF
【 摘 要 】

Background

Toll-like receptors play a key role in innate immunity by recognizing pathogens and activating appropriate responses. Pathogens express several signal molecules (pathogen-associated molecular patterns, PAMPs) essential for survival and pathogenicity. Recognition of PAMPs triggers an array of anti-microbial immune responses through the induction of various inflammatory cytokines. The objective of this work was to perform a case-control study to characterize the distribution of polymorphisms in three candidate genes (toll-like receptor 2, toll-like receptor 4, toll-like receptor 9) and to test their role as potential risk factors for tuberculosis infection in water buffalo (Bubalus bubalis).

Results

The case-control study included 184 subjects, 59 of which resulted positive to both intradermal TB test and Mycobacterium bovis isolation (cases) and 125 resulted negative to at least three consecutive intradermal TB tests. The statistical analysis indicated that two polymorphisms exhibited significant differences in allelic frequencies between cases and controls. Indeed, the TT genotype at TLR9 2340 C > T locus resulted significantly associated with susceptibility to bovine tuberculosis (P = 0.030, OR = 3.31, 95% CI = 1.05-10.40). One polymorphism resulted significantly associated with resistance to the disease, and included the CC genotype, at the TLR4 672 A > C locus (P = 0.01, OR = 0.26, 95% CI = 0.08-0.80). Haplotype reconstruction of the TLR2 gene revealed one haplotype (CTTACCAGCGGCCAGTCCC) associated with disease resistance (P = 0.04, OR = 0.51, 95% CI = 0.27–0.96), including the allelic variant associated with disease resistance.

Conclusions

The work describes novel mutations in bubaline TLR2, TLR4 and TLR9 genes and presents their association with M. bovis infection. These results will enhance our ability to determine the risk of developing the disease by improving the knowledge of the immune mechanisms involved in host response to mycobacterial infection, and will allow the creation of multiple layers of disease resistance in herds by selective breeding.

【 授权许可】

   
2014 Alfano et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150113170316199.pdf 224KB PDF download
【 参考文献 】
  • [1]Coppola S, Parente E, Dumontet S, La Peccerella A: The microflora of natural whey cultures utilized as starters in the manufacture of Mozzarella cheese from water-buffalo milk. Lait 1988, 68:295-310.
  • [2]Adams LG, Templeton JW: Genetic resistance to bacterial diseases of animals. Rev Sci Tech 1998, 17:200-219.
  • [3]Bishop SC, MacKenzie KM: Genetic management strategies for controlling infectious diseases in livestock populations. Genet Sel Evol 2003, 35(Suppl 1):S3-S17. BioMed Central Full Text
  • [4]Capparelli R, Alfano F, Amoroso MG, Borriello G, Fenizia D, Bianco A, Roperto S, Roperto F, Iannelli D: Protective effect of the Nramp1 BB genotype against Brucella abortus in the water buffalo (Bubalus bubalis). Infect Immun 2007, 75:988-996.
  • [5]Trinchieri G, Sher A: Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 2007, 7:179-190.
  • [6]Akira S, Takeda K, Kaisho T: Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001, 2:675-680.
  • [7]Takeda K, Akira S: TLR signaling pathways. Semin Immunol 2004, 16:3-9.
  • [8]Takeuchi O, Akira S: TOLL-like receptors; their physiological role and signal transduction system. Int Immunopharmacol 2001, 1:625-635.
  • [9]Koets A, Santema W, Mertens H, Oostenrijk D, Keestra M, Overdijk M, Labouriau R, Franken P, Frijters A, Nielen M, Rutten V: Susceptibility to paratuberculosis infection in cattle is associated with single nucleotide polymorphisms in Toll-like receptor 2 which modulate immune responses against Mycobacterium avium subspecies paratuberculosis. Prev Vet Med 2010, 93:305-315.
  • [10]Lorenz E, Mira JP, Cornish KL, Arbour NC, Schwartz DA: A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun 2000, 68:6398-6401.
  • [11]Mucha R, Bhide MR, Chakurkar EB, Novak M, Mikula I Sr: Toll-like receptors TLR1, TLR2 and TLR4 gene mutations and natural resistance to Mycobacterium avium subsp. paratuberculosis infection in cattle. Vet Immunol Immunopathol 2009, 128:381-388.
  • [12]Pinedo PJ, Buergelt CD, Donovan GA, Melendez P, Morel L, Wu R, Langaee TY, Rae DO: Candidate gene polymorphisms (BoIFNG, TLR4, SLC11A1) as risk factors for paratuberculosis infection in cattle. Prev Vet Med 2009, 91:189-196.
  • [13]Smirnova I, Poltorak A, Chan EK, McBride C, Beutler B: Phylogenetic variation and polymorphism at the toll-like receptor 4 locus (TLR4). Genome Biol 2000, 1:1. BioMed Central Full Text
  • [14]Sun L, Song Y, Riaz H, Yang H, Hua G, Guo A, Yang L: Polymorphisms in toll-like receptor 1 and 9 genes and their association with tuberculosis susceptibility in Chinese Holstein cattle. Vet Immunol Immunopathol 2012, 147:195-201.
  • [15]Tabel Y, Berdeli A, Mir S: Association of TLR2 gene Arg753Gln polymorphism with urinary tract infection in children. Int J Immunogenet 2007, 34:399-405.
  • [16]Wei T, Gong J, Jamitzky F, Heckl WM, Stark RW, Rössle SC: Homology modeling of human Toll-like receptors TLR7, 8, and 9 ligand-binding domains. Protein Sci 2009, 18:1684-1691.
  • [17]Medzhitov R: Toll-like receptors and innate immunity. Nat Rev Immunol 2001, 1:135-145.
  • [18]Amaral ME, Grant JR, Riggs PK, Stafuzza NB, Filho EA, Goldammer T, Weikard R, Brunner RM, Kochan KJ, Greco AJ, Jeong J, Cai Z, Lin G, Prasad A, Kumar S, Saradhi GP, Mathew B, Kumar MA, Miziara MN, Mariani P, Caetano AR, Galvão SR, Tantia MS, Vijh RK, Mishra B, Kumar ST, Pelai VA, Santana AM, Fornitano LC, Jones BC, et al.: A first generation whole genome RH map of the river buffalo with comparison to domestic cattle. BMC Genomics 2008, 9:631. BioMed Central Full Text
  • [19]Mitra M, Taraphder S, Sonawane GS, Verma A: Nucleotide sequencing and SNP detection of Toll-like receptor-4 gene in Murah Buffalo (Bubalus bubalis). Int ScholRes Net 2012, 7:659513. Art. ID
  • [20]Poltorak A, He X, Smirnova I, Liu MY, Huffel CV, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B: Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in TLR4 gene. Science 1998, 282:2085-2088.
  • [21]Quesniaux V, Fremond C, Jacobs M, Parida S, Nicolle D, Yeremeev V, Bihl F, Erard F, Botha T, Drennan M, Soler MN, Le Bert M, Schnyder B, Ryffel B: Toll-like receptor pathways in the immune responses to mycobacteria. Microbes Infect 2004, 6:946-959.
  • [22]Griebel PJ, Brownlie R, Manuja A, Nichani A, Mookherjee N, Popowych Y, Mutwiri G, Hecker R, Babiuk LA: Bovine toll-like receptor 9: A comparative analysis of molecular structure, function and expression. Vet Immunol Immunopathol 2005, 108:11-16.
  • [23]Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH: CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 2009, 37:205-210.
  • [24]Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH: CDD: A Conserved domain database for the functional annotation of proteins. Nucleic Acids Res 2011, 39:225-229.
  • [25]Acutis PL, Martucci F, D’Angelo A, Peletto S, Colussi S, Maurella C, Porcario C, Iulini B, Mazza M, Dell’Atti L, Zuccon F, Corona C, Martinelli N, Casalone C, Caramelli M, Lombardi G: Resistance to classical scrapie in experimentally challenged goats carrying mutation K222 of the prion protein gene. Vet Res 2012, 43:8. BioMed Central Full Text
  • [26]Goldmann W, Hunter N, Smith G, Foster J, Hope J: PrP genotype and agent effects in scrapie: change in allelic interaction with different isolates of agent in sheep, a natural host of scrapie. J Gen Virol 1994, 75:989-995.
  • [27]Novák K: Functional polymorphisms in Toll-like receptor genes for innate immunity in farm animals. Vet Immunol Immunopathol 2014, 157:1-11.
  • [28]Werling D, Piercy J, Coffey TJ: Expression of TOLL-like receptors (TLR) by bovine antigen-presenting cells-potential role in pathogen discrimination? Vet Immunol Immunopathol 2006, 112:2-11.
  • [29]White SN, Taylor KH, Abbey CA, Gill CA, Womack JE: Haplotype variation in bovine Toll-like receptor 4 and computational prediction of a positively selected ligand-binding domain. Proc Natl Acad Sci U S A 2003, 100:10364-10369.
  • [30]Cargill EJ, Womack JE: Detection of polymorphisms in bovine toll-like receptors 3, 7, 8, and 9. Genomics 2007, 89:745-755.
  • [31]Torres-García D, Cruz-Lagunas A, García-Sancho Figueroa MC, Fernández-Plata R, Baez-Saldaña R, Mendoza-Milla C, Barquera R, Carrera-Eusebio A, Ramírez-Bravo S, Campos L, Angeles J, Vargas-Alarcón G, Granados J, Gopal R, Khader SA, Yunis EJ, Zuñiga J: Variants in toll-like receptor 9 gene influence susceptibility to tuberculosis in a Mexican population. J Transl Med 2013, 11:220. BioMed Central Full Text
  • [32]Chamary JV, Hurst LD: The price of silent mutations. Sci Am 2009, 300:46-53.
  • [33]Sauna ZE, Kimchi-Sarfaty C, Ambudkar SV, Gottesman MM: The sounds of silence: synonymous mutations affect function. Pharmacogenomics 2007, 8:527-532.
  • [34]Kobayashi K, Yuliwulandari R, Yanai H, Naka I, Lien LT, Hang NTL, Hijikata M, Keicho N, Tokunaga K: Association of TLR polymorphisms with development of tuberculosis in Indonesian females. Tissue Antigens 2012, 79:190-197.
  • [35]Pagani F, Buratti E, Stuani C, Baralle FE: Missense, nonsense, and neutral mutations define juxtaposed regulatory elements of splicing in cystic fibrosis transmembrane regulator exon 9. J Biol Chem 2003, 278:26580-26588.
  • [36]Pagani F, Raponi M, Baralle FE: Synonymous mutations in CFTR exon 12 affect splicing and are not neutral in evolution. Proc Natl Acad Sci U S A 2005, 102:6368-6372.
  • [37]Capon F, Trembath RC, Barker JN: An update on the genetics of psoriasis. Dermatol Clin 2004, 22:339-347.
  • [38]OIE: Bovine tuberculosis. In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. 2013. Chapter 2.4.7.
  • [39]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleis Acids Symposium Series 1999, 41:95-98.
  • [40]Gao X, Starmer J, Martin ER: A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet Epidemiol 2008, 32:361-369.
  • [41]Nyholt DR: A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 2004, 74:765-769.
  • [42]Stephens M, Smith NJ, Donnelly P: A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001, 68:978-989.
  文献评价指标  
  下载次数:13次 浏览次数:35次