期刊论文详细信息
BMC Evolutionary Biology
High lifetime inbreeding depression counteracts the reproductive assurance benefit of selfing in a mass-flowering shrub
André Pornon2  Nathalie Escaravage2  Pierre-Olivier Cheptou3  Chloé EL Delmas1 
[1] Current address: INRA, ISVV, UMR1065 Santé et Agroécologie du Vignoble, Villenave d’Ornon, F-33883, France;CNRS, EDB, UMR 5174, Toulouse, F-31062, France;UMR 5175 CEFE – Centre d’Ecologie Fonctionnelle et Evolutive (CNRS), 1919 Route de Mende, Montpellier Cedex 05, F-34293, France
关键词: Rhododendron ferrugineum;    Reproductive assurance;    Selfing rate;    Self-compatibility;    Perennial species;    Mixed mating;    Inbreeding depression;   
Others  :  1121801
DOI  :  10.1186/s12862-014-0243-7
 received in 2014-08-25, accepted in 2014-11-14,  发布年份 2014
PDF
【 摘 要 】

Background

Decreases in mate and/or pollinator availability would be expected to affect the selective pressure on plant mating systems. An increase in self-fertilization may evolve to compensate for the negative effects of pollination failure. However, the benefit of selfing in variable pollination environments depends on the relative fitnesses of selfed and outcrossed progeny. We investigated the potential for selfing to provide reproductive assurance over the lifetime of a long-lived perennial species and its variation between plant patches of various sizes. Patch size is likely to affect mate and pollinator availabilities, thereby affecting pollination success and the rate of selfing. We estimated fruit and seed set, reproductive assurance, self-compatibility, the multilocus patch selfing rate and lifetime inbreeding depression in natural patches of Rhododendron ferrugineum (Ericaceae), a mass-flowering species characterized by considerable patch size variation (as estimated by the total number of inflorescences).

Results

Open seed set declined linearly with increasing patch size, whereas pollinator-mediated seed set (emasculated flowers) was not significantly affected. Progeny array analysis indicated that the selfing rate declined with increasing patch size, consistent with greater reproductive assurance in small sparse patches than in large, dense patches. However, fruit set and adult fitness decreased with decreasing patch size, with an estimated mean lifetime inbreeding depression of 0.9 (obtained by comparing F values in adults and progenies).

Conclusions

Lifetime inbreeding depression strongly counteracts the advantage of reproductive assurance due to selfing in this long-lived species. The poor fitness of selfed offspring should counteract any evolution towards selfing, despite its potential to alleviate the negative consequences of pollen limitation. This study highlights the need to estimate lifetime inbreeding depression, together with mating system and pollination parameters, if we are to understand the actual benefit of selfing and avoid the overestimation of reproductive assurance.

【 授权许可】

   
2014 Delmas et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150213012442677.pdf 2927KB PDF download
Figure 3. 128KB Image download
Figure 2. 20KB Image download
Figure 1. 31KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA: Ecology - biodiversity and ecosystem functioning: current knowledge and future challenges. Science 2001, 294:804-808.
  • [2]Biesmeijer JC, Roberts SPM, Reemer M, Ohlemuller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE: Parallel declines in pollinators and insect-pollinated plants in britain and the netherlands. Science 2006, 313:351-354.
  • [3]Eckert CG, Kalisz S, Geber MA, Sargent R, Elle E, Cheptou PO, Goodwillie C, Johnston MO, Kelly JK, Moeller DA, Porcher E, Ree RH, Vallejo-Marin M, Winn AA: Plant mating systems in a changing world. Trends Ecol Evol 2010, 25:35-43.
  • [4]Thomann M, Imbert E, Deveaux C, Cheptou PO: Flowering plants under global pollinator decline. Trends Plant Sci 2013, 18:353-359.
  • [5]Darwin C: The Effects of Cross and Self Fertilization in the Vegetable Kingdom. John Murray, London, UK; 1876.
  • [6]Lloyd DG: Some reproductive factors affecting the selection of self-fertilization in plants. Am Nat 1979, 113:67-79.
  • [7]Holsinger KE: Reproductive systems and evolution in vascular plants. Proc Natl Acad Sci U S A 2000, 97:7037-7042.
  • [8]Herlihy CR, Eckert CG: Genetic cost of reproductive assurance in a self-fertilizing plant. Nature 2002, 416:320-323.
  • [9]Eckert CG, Samis KE, Dart S: Reproductive Assurance and the Evolution of Uniparental Reproduction in Flowering Plants. In Ecology and Evolution of Flowers. Edited by Harder LD, Barrett SCH. Oxford University Press, Oxford, UK; 2006:183-203.
  • [10]Kalisz S, Vogler DW, Hanley KM: Context-dependent autonomous self-fertilization yields reproductive assurance and mixed mating. Nature 2004, 430:884-887.
  • [11]Darwin C: The Different Forms of Flowers on Plants of the Same Species. John Murray, London, UK; 1877.
  • [12]Vaughton G, Ramsey M, Simpson I: Does selfing provide reproductive assurance in the perennial herb Bulbine vagans (Asphodelaceae)? Oikos 2008, 117:390-398.
  • [13]Lande R, Schemske DW: The evolution of self-fertilization and inbreeding depression in plants. 1. Genetics models. Evolution 1985, 39:24-40.
  • [14]Uyenoyama MK, Holsinger KE, Waller DM: Ecological and genetic factors directing the evolution of self-fertilization. Oxford Surv Evol Biol 1993, 9:327-381.
  • [15]Fisher RA: Average excess and average effect of a gene substitution. Ann Eugen 1941, 11:53-63.
  • [16]Hedrick PW, Kalinowski ST: Inbreeding depression in conservation biology. Annu Rev Ecol Evol Syst 2000, 31:139-162.
  • [17]Lloyd DG: Self-and cross-fertilization in plants. II. The selection of self-fertilization. Int J Plant Sci 1992, 153:370-380.
  • [18]Cheptou PO, Massol F: Pollination fluctuations drive evolutionary syndromes linking dispersal and mating system. Am Nat 2009, 174:46-55.
  • [19]Charlesworth D, Charlesworth B: Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Evol Syst 1987, 18:237-268.
  • [20]Barrett SCH, Charlesworth D: Effects of a change in the level of inbreeding on the genetic load. Nature 1991, 352:522-524.
  • [21]Byers DL, Waller DM: Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Annu Rev Ecol Evol Syst 1999, 30:479-513.
  • [22]Johnston MO, Porcher E, Cheptou PO, Eckert CG, Elle E, Geber MA, Kalisz S, Kelly JK, Moeller DA, Vallejo-Marin M, Winn AA: Correlations among fertility components can maintain mixed mating in plants. Am Nat 2009, 173:1-11.
  • [23]Roff DA: Evolutionary Quantitative Genetics. Chapman & Hall, New York; 1997.
  • [24]Dart S, Eckert CG: Experimental and genetic analyses reveal that inbreeding depression declines with increased self-fertilization among populations of a coastal dune plant. J Evol Biol 2013, 26:587-599.
  • [25]Cheptou PO, Imbert E, Lepart J, Escarre J: Effects of competition on lifetime estimates of inbreeding depression in the outcrossing plant Crepis sancta (Asteraceae). J Evol Biol 2000, 13:522-531.
  • [26]Armbruster P, Reed DH: Inbreeding depression in benign and stressful environments. Heredity 2005, 95:235-242.
  • [27]Waller D, Dole J, Bersch A: Effects of stress and phenotypic variation on inbreeding depression in Brassica rapa. Evolution 2008, 62:917-931.
  • [28]Keller LF, Waller DM: Inbreeding effects in wild populations. Trends Ecol Evol 2002, 17:230-241.
  • [29]Morgan MT, Schoen DJ, Bataillon TM: The evolution of self-fertilization in perennials. Am Nat 1997, 150:618-638.
  • [30]Brunet J, Eckert C: Effects of floral morphology and display on outcrossing in blue columbine, Aquilegia caerulea (Ranunculaceae). Funct Ecol 1998, 12:596-606.
  • [31]Brunet J, Sweet HR: The maintenance of selfing in a population of the rocky mountain columbine. Int J Plant Sci 2006, 167:213-219.
  • [32]Ruan CJ, Teixeira da Silva JA: Evolutionary assurance vs. mixed mating. Crit Rev Plant Sci 2012, 31:290-302.
  • [33]Ruan CJ, Li H, Mopper S: Kosteletzkya virginica displays mixed mating in response to the pollinator environment despite strong inbreeding depression. Plant Ecol 2009, 203:183-193.
  • [34]Delmas CEL, Escaravage N, Pornon A: Massive floral display affects insect visits but not pollinator‐mediated pollen transfer in Rhododendron ferrugineum. Plant Biol 2014, 16:234-243.
  • [35]Delmas CEL, Escaravage N, Cheptou P-O, Charrier O, Ruzafa S, Winterton P, Pornon A: Relative impact of mate versus pollinator availability on pollen limitation and outcrossing rates in a mass-flowering species.Plant Biol 2014, ᅟ:ᅟ. doi:10.1111/plb.12200.
  • [36]Ritland K: Inferences about inbreeding depression based on changes of the inbreeding coefficient. Evolution 1990, 44:1230-1241.
  • [37]Goodwillie C, Kalisz S, Eckert CG: The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu Rev Ecol Evol Syst 2005, 36:47-79.
  • [38]Routley MB, Mavraganis K, Eckert CG: Effect of population size on the mating system in a self-compatible, autogamous plant, Aquilegia canadensis (Ranunculaceae). Heredity 1999, 82:518-528.
  • [39]Franceschinelli EV, Bawa KS: The effect of ecological factors on the mating system of a south american shrub species (Helicteres brevispira). Heredity 2000, 84:116-123.
  • [40]Brys R, de Crop E, Hoffmann M, Jacquemyn H: Importance of autonomous selfing is inversely related to population size and pollinator availability in a monocarpic plant. Am J Bot 2011, 98:1834-1840.
  • [41]Kennedy BF, Elle E: The reproductive assurance benefit of selfing: importance of flower size and population size. Oecologia 2008, 155:469-477.
  • [42]Elle E, Carney R: Reproductive assurance varies with flower size in Collinsia parviflora (Scrophulariaceae). Am J Bot 2003, 90:888-896.
  • [43]Zhang ZQ, Li QJ: Autonomous selfing provides reproductive assurance in an alpine ginger Roscoea schneideriana (Zingiberaceae). Ann Bot 2008, 102:531-538.
  • [44]Vaughton G, Ramsey M: Pollinator-mediated selfing erodes the flexibility of the best-of-both-worlds mating strategy in Bulbine vagans. Funct Ecol 2010, 24:374-382.
  • [45]Willi Y: Evolution towards self-compatibility when mates are limited. J Evol Biol 2009, 22(9):1967-1973.
  • [46]Busch JW, Schoen DJ: The evolution of self-incompatibility when mates are limiting. Trends Plant Sci 2008, 13:128-136.
  • [47]Hirao AS, Kameyama Y, Ohara M, Isagi Y, Kudo G: Seasonal changes in pollinator activity influence pollen dispersal and seed production of the alpine shrub Rhododendron aureum (Ericaceae). Mol Ecol 2006, 15:1165-1173.
  • [48]Mahy G, Jacquemart AL: Mating system of calluna vulgaris: self-sterility and outcrossing estimations. Can J Bot 1998, 76:37-42.
  • [49]Karron JD, Thumser NN, Tucker R, Hessenauer AJ: The influence of population-density on outcrossing rates in Mimulus ringens. Heredity 1995, 75:175-180.
  • [50]Karron JD, Mitchell RJ, Holmquist KG, Bell JM, Funk B: The influence of floral display size on selfing rates in Mimulus ringens. Heredity 2004, 92:242-248.
  • [51]Busch JW, Delph LF: The relative importance of reproductive assurance and automatic selection as hypotheses for the evolution of self-fertilization. Ann Bot 2012, 109:553-562.
  • [52]Husband BC, Schemske DW: Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 1996, 50:54-70.
  • [53]Hokanson K, Hancock J: Early-acting inbreeding depression in three species of Vaccinium (Ericaceae). Sex Plant Reprod 2000, 13:145-150.
  • [54]Waser NM, Price MV: Reproductive costs of selfpollination in Ipomopsis aggregata (Polemoniaceae): are ovules usurped? Am J Bot 1991, 78:1036-1043.
  • [55]Mahy G, Jacquemart AL: Early inbreeding depression and pollen competition in Calluna vulgaris (L.) Hull. Ann Bot 1999, 83:697-704.
  • [56]Jarne P, Charlesworth D: The evolution of the selfing rate in functionally hermaphrodite plants and animals. AnnRev Ecol Syst 1993, 24:441-466.
  • [57]Michalski SG, Durka W: High selfing and high inbreeding depression in peripheral populations of Juncus atratus. Mol Ecol 2007, 16:4715-4727.
  • [58]Ramsey M, Vaughton G: Inbreeding depression and pollinator availability in a partially self-fertile perennial herb Blandfordia grandiflora (Liliaceae). Oikos 1996, 76:465-474.
  • [59]Kittelson PM, Maron JL: Outcrossing rate and inbreeding depression in the perennial yellow bush lupine, Lupinus arboreus (Fabaceae). Am J Bot 2000, 87:652-660.
  • [60]González-Varo JP, Traveset A: Among-individual variation in pollen limitation and inbreeding depression in a mixed-mating shrub. Ann Bot 2010, 106:999-1008.
  • [61]Sorensen FC: Relationship between self-fertility, allocation of growth, and inbreeding depression in three coniferous species. Evolution 1999, 53:417-425.
  • [62]Petit RJ, Hampe A: Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 2006, 37:187-214.
  • [63]Morgan MT: Consequences of life history for inbreeding depression and mating system evolution in plants. Proc R Soc Lond B Biol Sci 2001, 268:1817-1824.
  • [64]Winn AA, Elle E, Kalisz S, Cheptou P-O, Eckert CG, Goodwillie C, Johnston MO, Moeller DA, Ree RH, Sargent RD, Vallejo-Marín M: Analysis of inbreeding depression in mixed-mating plants provides evidence for selective interference and stable mixed mating. Evolution 2011, 65:3339-3359.
  • [65]Ritland K: Inferring the genetic basis of inbreeding depression in plants. Genome 1996, 39:1-8.
  • [66]Kohn JR: Why be female? Nature 1988, 335:431-433.
  • [67]Latta R, Ritland K: Models for the evolution of selfing under alternative modes of inheritance. Heredity 1993, 71:1-10.
  • [68]Lande R, Schemske DW, Schultz ST: High inbreeding depression, selective interference among loci, and the threshold selfing rate for purging recessive lethal mutations. Evolution 1994, 48:965-978.
  • [69]Holsinger KE: Inbreeding depression and the evolution of plant mating systems. Trends Ecol Evol 1991, 6:307-308.
  • [70]Porcher E, Lande R: The evolution of self-fertilization and inbreeding depression under pollen discounting and pollen limitation. J Evol Biol 2005, 18:497-508.
  • [71]Scofield DG, Schultz ST: Mitosis, stature and evolution of plant mating systems: low-phi and high-phi plants. Proc R Soc Lond B Biol Sci 2006, 273:275-282.
  • [72]Igic B, Busch JW: Is self‐fertilization an evolutionary dead end? New Phytol 2013, 198:386-397.
  • [73]Wright SI, Kalisz S, Slotte T: Evolutionary consequences of self-fertilization in plants. Proc R Soc Lond B Biol Sci 2013, 280:20130133.
  • [74]Schoen DJ, Morgan MT, Bataillon T: How does self-pollination evolve? Inferences from floral ecology and molecular genetic variation. Philos Trans R Soc Lond B Biol Sci 1996, 351:1281-1290.
  • [75]Jain SK: The evolution of inbreeding in plants. Ann Rev Ecol Syst 1976, 7:469-495.
  • [76]Lloyd DG: Demographic Factors and Mating Patterns in Angiosperms. In Demography and Evolution in Plant Populations. Edited by Solbrig OT. Blackwell, Oxford, U.K; 1980:67-88.
  • [77]Cruden RW, Lyon DL: Facultative Xenogamy: Examination of a Mixed Mating System. In The Evolutionary Ecology of Plants. Edited by Bock JH, Linhart YB. Westview, Boulder, CO; 1989:171-207.
  • [78]Holsinger KE: Pollination biology and the evolution of mating systems in flowering plants. Evol Biol 1996, 29:107-149.
  • [79]Stebbins GL: Self fertilization and population variability in the higher plants. Am Nat 1957, 91:337-354.
  • [80]Ashman TL, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ, Morgan MT, Wilson WG: Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 2004, 85:2408-2421.
  • [81]Gugerli F: Effects of elevation on sexual reproduction in alpine populations of Saxifraga oppositifolia (Saxifragaceae). Oecologia 1998, 114:60-66.
  • [82]Harder LD, Barrett SCH: Mating cost of large floral displays in hermaphrodite plants. Nature 1995, 373:512-515.
  • [83]Barrett SCH, Harder LD, Cole WW: Effects of flower number and position on self-fertilization in experimental populations of Eichhornia paniculata (Pontederiaceae). Funct Ecol 1994, 8:526-535.
  • [84]Ishida K: Maintenance of inbreeding depression in a highly self-fertilizing tree, Magnolia obovata thunb. Evol Ecol 2006, 20:173-191.
  • [85]de Jong TJ, Waser NM, Klinkhamer PGL: Geitonogamy: the neglected side of selfing. Trends Ecol Evol 1993, 8:321-325.
  • [86]Snow AA, Spira TP, Simpson R, Klips RA: The Ecology of Geitonogamous Pollination. In Floral Biology. Studies on Floral Evolution in Animal-Pollinated Plants. Edited by Llyod DG, Barrett SCH. Chapman and Hall, New York, USA; 1996:191-216.
  • [87]Holsinger KE, Feldman MW, Christiansen FB: The evolution of self-fertilization in plants: a population genetic model. Am Nat 1984, 124:446-453.
  • [88]Charlesworth D, Charlesworth B: Quantitative genetics in plants: the effect of the breeding system on genetic variability. Evolution 1995, 49:911-920.
  • [89]Ozenda P: La Végétation de la Chaine Alpine Dans l’espace Montagnard Européen. Masson, Paris, France; 1985.
  • [90]Escaravage N, Pornon A, Doche B, Till-Bottraud I: Breeding system in an alpine species: Rhododendron ferrugineum L. (Ericaceae) in the french northern Alps. Can J Bot 1997, 75:736-743.
  • [91]Escaravage N, Wagner J: Pollination effectiveness and pollen dispersal in a Rhododendron ferrugineum (Ericaceae) population. Plant Biol 2004, 6:606-615.
  • [92]Escaravage N, Flubacker E, Pornon A, Doche B, Till-Bottraud I: Stamen dimorphism in Rhododendron ferrugineum (Ericaceae): development and function. Am J Bot 2001, 88:68-75.
  • [93]Escaravage N: Système de Reproduction et Stratégie de Colonisation de Rhododendron Ferrugineum l. (Ericaceae) (Étage Subalpin; Alpes du Nord). University of Grenoble, France; 1997.
  • [94]Lloyd DG, Schoen DJ: Self-and cross-fertilization in plants. I Functional dimensions. Intl J Plant Sci 1992, 153:358-369.
  • [95]Kramer CY: Extension of multiple range tests to group means with unequal numbers of replications. Biometrics 1956, 12:309-310.
  • [96]Delmas CEL, Lhuillier E, Pornon A, Escaravage N: Isolation and characterization of microsatellite loci in Rhododendron ferrugineum (Ericaceae) using pyrosequencing technology. Am J Bot 2011, 98:e120-e122.
  • [97]Naito K, Isagi Y, Nakagoshi N: Isolation and characterization of microsatellites of Rhododendron metternichii Sieb. et Zucc. var. hondoense Nakai. Mol Ecol 1998, 7:927-928.
  • [98]Dendauw J, De Riek J, Arens P, Van Bockstaele E, Vosman B, De Loose M: Development of sequenced tagged microsatellite site (STMS) markers in Azalea. Acta Horticult 2001, 1:193-197.
  • [99]Ritland K: Extensions of models for the estimation of mating systems using n independent loci. Heredity 2002, 88:221-228.
  • [100]Ritland K, Jain S: A model for the estimation of outcrossing rate and gene frequencies using n independent loci. Heredity 1981, 47:35-52.
  • [101]Ritland K: Correlated matings in the partial selfer Mimulus guttatus. Evolution 1989, 43:848-859.
  • [102]Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F: Genetix 4.05, Logiciel Sous Windows tm Pour la Génétique des Populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France); 2004.
  • [103]Charlesworth D: The apparent selection on neutral marker loci in partially inbreeding populations. Genet Res 1991, 57:159-175.
  • [104]Eckert C, Barrett S: Inbreeding depression in partially self-fertilizing Decodon verticillatus (Lythraceae): population-genetic and experimental analyses. Evolution 1994, 48:952-964.
  • [105]Agren J, Schemske DW: Outcrossing rate and inbreeding depression in two annual monoecious herbs, Begonia hirsuta and B. Seminovata Evolution 1993, 47:125-135.
  • [106]Mutikainen P, Delph LF: Inbreeding depression in gynodioecious Lobelia siphilitica: among-family differences override between-morph differences. Evolution 1998, 52:1572-1582.
  • [107]Dudash MR, Fenster CB: Multiyear study of pollen limitation and cost of reproduction in the iteroparous Silene virginica. Ecology 1997, 78:484-493.
  • [108]Busch JW: Inbreeding depression in self-incompatible and self-compatible populations of Leavenworthia alabamica. Heredity 2005, 94:159-165.
  • [109]Johnston MO, Schoen DJ: On the measurement of inbreeding depression. Evolution 1994, 48:1735-1741.
  • [110]Chang SM, Rausher MD: The role of inbreeding depression in maintaining the mixed mating system of the common morning glory, Ipomoea purpurea. Evolution 1999, 53:1366-1376.
  文献评价指标  
  下载次数:26次 浏览次数:12次