期刊论文详细信息
BMC Medical Genomics
Whole transcriptome sequencing identifies tumor-specific mutations in human oral squamous cell carcinoma
Sitong Sheng3  Hong Jin3  Jun Zhang1  Qu Zhang2 
[1] Department of Surgery, Shanghai Institute of Digestive Surgery, Rui Jin Hospital, Shanghai Jiaotong University, School of Medicine, No.197 Ruijin er Road, Shanghai, P.R. China;Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA;HYK High-throughput Biotechnology Institute, 4th Floor, Building No.11, Software Park, 2nd Central Keji Rd, Hi-Tech Industrial Park, Shenzhen, China
关键词: Disruptive genes;    Differential expression;    Significantly mutated genes;    Somatic mutations;    Oral squamous cell carcinoma;    RNA-Seq;   
Others  :  1092268
DOI  :  10.1186/1755-8794-6-28
 received in 2013-04-18, accepted in 2013-08-26,  发布年份 2013
PDF
【 摘 要 】

Background

The accumulation of somatic mutations in genes and molecular pathways is a major factor in the evolution of oral squamous cell carcinoma (OSCC), which sparks studies to identify somatic mutations with clinical potentials. Recently, massively parallel sequencing technique has started to revolutionize biomedical studies, due to the rapid increase in its throughput and drop in cost. Hence sequencing of whole transcriptome (RNA-Seq) becomes a superior approach in cancer studies, which enables the detection of somatic mutations and accurate measurement of gene expression simultaneously.

Methods

We used RNA-Seq data from tumor and matched normal samples to investigate somatic mutation spectrum in OSCC.

Results

By applying a sophisticated bioinformatic pipeline, we interrogated two tumor samples and their matched normal tissues and identified 70,472 tumor somatic mutations in protein-coding regions. We further identified 515 significantly mutated genes (SMGs) and 156 tumor-specific disruptive genes (TDGs), with six genes in both sets, including ANKRA2, GTF2H5, STOML1, NUP37, PPP1R26, and TAF1L. Pathway analysis suggested that SMGs were enriched in cell adhesion pathways, which are frequently indicated in tumor development. We also found that SMGs tend to be differentially expressed between tumors and normal tissues, implying a regulatory role of accumulation of genetic aberrations in these genes.

Conclusions

Our finding of known tumor genes proves of the utility of RNA-Seq in mutation screening, and functional analysis of genes detected here would help understand the molecular mechanism of OSCC.

【 授权许可】

   
2013 Zhang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128181903253.pdf 406KB PDF download
Figure 2. 52KB Image download
Figure 1. 79KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Parkin DM, Bray F, Ferlay J, Pisani P: Global cancer statistics, 2002. CA Cancer J Clin 2005, 55(2):74-108.
  • [2]Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ: Cancer statistics, 2009. CA Cancer J Clin 2009, 59(4):225-249.
  • [3]Gibb EA, Enfield KS, Tsui IF, Chari R, Lam S, Alvarez CE, Lam WL: Deciphering squamous cell carcinoma using multidimensional genomic approaches. J Skin Cancer 2011, 2011:541405.
  • [4]Vogelstein B, Kinzler KW: Cancer genes and the pathways they control. Nat Med 2004, 10(8):789-799.
  • [5]Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, et al.: Patterns of somatic mutation in human cancer genomes. Nature 2007, 446(7132):153-158.
  • [6]Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, et al.: Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008, 321(5897):1801-1806.
  • [7]Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, et al.: The consensus coding sequences of human breast and colorectal cancers. Science 2006, 314(5797):268-274.
  • [8]Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, et al.: The genomic landscapes of human breast and colorectal cancers. Science 2007, 318(5853):1108-1113.
  • [9]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10(1):57-63.
  • [10]Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5(7):621-628.
  • [11]Zhang LQ, Cheranova D, Gibson M, Ding S, Heruth DP, Fang D, Ye SQ: RNA-seq Reveals Novel Transcriptome of Genes and Their Isoforms in Human Pulmonary Microvascular Endothelial Cells Treated with Thrombin. PLoS One 2012, 7(2):e31229.
  • [12]Gregg C, Zhang J, Butler JE, Haig D, Dulac C: Sex-specific parent-of-origin allelic expression in the mouse brain. Science 2010, 329(5992):682-685.
  • [13]Gregg C, Zhang J, Weissbourd B, Luo S, Schroth GP, Haig D, Dulac C: High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 2010, 329(5992):643-648.
  • [14]Cloonan N, Forrest AR, Kolle G, Gardiner BB, Faulkner GJ, Brown MK, Taylor DF, Steptoe AL, Wani S, Bethel G, et al.: Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 2008, 5(7):613-619.
  • [15]Cirulli ET, Singh A, Shianna KV, Ge D, Smith JP, Maia JM, Heinzen EL, Goedert JJ, Goldstein DB: Screening the human exome: a comparison of whole genome and whole transcriptome sequencing. Genome Biol 2010, 11(5):R57. BioMed Central Full Text
  • [16]Kridel R, Meissner B, Rogic S, Boyle M, Telenius A, Woolcock B, Gunawardana J, Jenkins C, Cochrane C, Ben-Neriah S, et al.: Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood 2012, 119(9):1963-1971.
  • [17]Canovas A, Rincon G, Islas-Trejo A, Wickramasinghe S, Medrano JF: SNP discovery in the bovine milk transcriptome using RNA-Seq technology. Mamm Genome 2010, 21(11–12):592-598.
  • [18]Tuch BB, Laborde RR, Xu X, Gu J, Chung CB, Monighetti CK, Stanley SJ, Olsen KD, Kasperbauer JL, Moore EJ, et al.: Tumor transcriptome sequencing reveals allelic expression imbalances associated with copy number alterations. PLoS One 2010, 5(2):e9317.
  • [19]Homer N, Merriman B, Nelson SF: BFAST: an alignment tool for large scale genome resequencing. PLoS One 2009, 4(11):e7767.
  • [20]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.
  • [21]Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K: dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001, 29(1):308-311.
  • [22]Dees ND, Zhang Q, Kandoth C, Wendl MC, Schierding W, Koboldt DC, Mooney TB, Callaway MB, Dooling D, Mardis ER, et al.: MuSiC: identifying mutational significance in cancer genomes. Genome Res 2012, 22(8):1589-1598.
  • [23]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al.: Gene ontology: tool for the unification of biology, The Gene Ontology Consortium. Nat Genet 2000, 25(1):25-29.
  • [24]Alexa A, Rahnenfuhrer J, Lengauer T: Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 2006, 22(13):1600-1607.
  • [25]Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28(1):27-30.
  • [26]Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M: KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 2012, 40(Database issue):D109-D114.
  • [27]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11(10):R106. BioMed Central Full Text
  • [28]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 1995, 57(1):12.
  • [29]Moslehi R, Kumar A, Mills JL, Ambroggio X, Signore C, Dzutsev A: Phenotype-specific adverse effects of XPD mutations on human prenatal development implicate impairment of TFIIH-mediated functions in placenta. Eur J Hum Genet 2012, 20(6):626-631.
  • [30]Kumar P, Henikoff S, Ng PC: Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 2009, 4(7):1073-1081.
  • [31]Garnis C, Chari R, Buys TP, Zhang L, Ng RT, Rosin MP, Lam WL: Genomic imbalances in precancerous tissues signal oral cancer risk. Mol Cancer 2009, 8:50. BioMed Central Full Text
  • [32]Mao L, Hong WK, Papadimitrakopoulou VA: Focus on head and neck cancer. Cancer Cell 2004, 5(4):311-316.
  • [33]Liu SA, Jiang RS, Chen FJ, Wang WY, Lin JC: Somatic mutations in the D-loop of mitochondrial DNA in oral squamous cell carcinoma. Eur Arch Otorhinolaryngol 2012, 269(6):1665-1670.
  • [34]Kozaki K, Imoto I, Pimkhaokham A, Hasegawa S, Tsuda H, Omura K, Inazawa J: PIK3CA mutation is an oncogenic aberration at advanced stages of oral squamous cell carcinoma. Cancer Sci 2006, 97(12):1351-1358.
  • [35]Califano J, van der Riet P, Westra W, Nawroz H, Clayman G, Piantadosi S, Corio R, Lee D, Greenberg B, Koch W, et al.: Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res 1996, 56(11):2488-2492.
  • [36]Tsui IF, Rosin MP, Zhang L, Ng RT, Lam WL: Multiple aberrations of chromosome 3p detected in oral premalignant lesions. Cancer Prev Res (Phila) 2008, 1(6):424-429.
  • [37]Rosin MP, Cheng X, Poh C, Lam WL, Huang Y, Lovas J, Berean K, Epstein JB, Priddy R, Le ND, et al.: Use of allelic loss to predict malignant risk for low-grade oral epithelial dysplasia. Clin Cancer Res 2000, 6(2):357-362.
  • [38]Tsui IF, Poh CF, Garnis C, Rosin MP, Zhang L, Lam WL: Multiple pathways in the FGF signaling network are frequently deregulated by gene amplification in oral dysplasias. Int J Cancer 2009, 125(9):2219-2228.
  • [39]Myllykangas S, Bohling T, Knuutila S: Specificity, selection and significance of gene amplifications in cancer. Semin Cancer Biol 2007, 17(1):42-55.
  • [40]Leethanakul C, Patel V, Gillespie J, Pallente M, Ensley JF, Koontongkaew S, Liotta LA, Emmert-Buck M, Gutkind JS: Distinct pattern of expression of differentiation and growth-related genes in squamous cell carcinomas of the head and neck revealed by the use of laser capture microdissection and cDNA arrays. Oncogene 2000, 19(28):3220-3224.
  • [41]Alevizos I, Mahadevappa M, Zhang X, Ohyama H, Kohno Y, Posner M, Gallagher GT, Varvares M, Cohen D, Kim D, et al.: Oral cancer in vivo gene expression profiling assisted by laser capture microdissection and microarray analysis. Oncogene 2001, 20(43):6196-6204.
  • [42]Belbin TJ, Singh B, Barber I, Socci N, Wenig B, Smith R, Prystowsky MB, Childs G: Molecular classification of head and neck squamous cell carcinoma using cDNA microarrays. Cancer Res 2002, 62(4):1184-1190.
  • [43]Al Moustafa AE, Alaoui-Jamali MA, Batist G, Hernandez-Perez M, Serruya C, Alpert L, Black MJ, Sladek R, Foulkes WD: Identification of genes associated with head and neck carcinogenesis by cDNA microarray comparison between matched primary normal epithelial and squamous carcinoma cells. Oncogene 2002, 21(17):2634-2640.
  • [44]Yu YH, Kuo HK, Chang KW: The evolving transcriptome of head and neck squamous cell carcinoma: a systematic review. PLoS One 2008, 3(9):e3215.
  • [45]Zavras AI, Yoon AJ, Chen MK, Lin CW, Yang SF: Association between polymorphisms of DNA repair gene ERCC5 and oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2012, 114(5):624-629.
  • [46]Mukherjee S, Bhowmik AD, Roychoudhury P, Mukhopadhyay K, Ray JG, Chaudhuri K: Association of XRCC1, XRCC3, and NAT2 polymorphisms with the risk of oral submucous fibrosis among eastern Indian population. J Oral Pathol Med 2012, 41(4):292-302.
  • [47]Vaezi A, Wang X, Buch S, Gooding W, Wang L, Seethala RR, Weaver DT, D’Andrea AD, Argiris A, Romkes M, et al.: XPF expression correlates with clinical outcome in squamous cell carcinoma of the head and neck. Clin Cancer Res 2011, 17(16):5513-5522.
  • [48]Thomas GJ, Speight PM: Cell adhesion molecules and oral cancer. Crit Rev Oral Biol Med 2001, 12(6):479-498.
  • [49]Hung SC, Wu IH, Hsue SS, Liao CH, Wang HC, Chuang PH, Sung SY, Hsieh CL: Targeting l1 cell adhesion molecule using lentivirus-mediated short hairpin RNA interference reverses aggressiveness of oral squamous cell carcinoma. Mol Pharm 2010, 7(6):2312-2323.
  • [50]Chepelev I, Wei G, Tang Q, Zhao K: Detection of single nucleotide variations in expressed exons of the human genome using RNA-Seq. Nucleic Acids Res 2009, 37(16):e106.
  • [51]Morin R, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh T, McDonald H, Varhol R, Jones S, Marra M: Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques 2008, 45(1):81-94.
  文献评价指标  
  下载次数:0次 浏览次数:3次