期刊论文详细信息
BMC Genomics
Haploinsufficiency of ETV6 and CDKN1B in patients with acute myeloid leukemia and complex karyotype
Doris Steinemann2  Brigitte Schlegelberger2  Konstanze Döhner4  Arnold Ganser3  Michael Heuser3  Ulrich Lehmann1  Gudrun Göhring2  Georgi Manukjan2  Winfried Hofmann2  Lars Bullinger4  Frank G Rücker4  Simone Feurstein2 
[1] Institute of Pathology, Hannover Medical School, Hannover, Germany;Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany;Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany;Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
关键词: Gene expression;    Methylation;    ArrayCGH;    CDKN1B;    ETV6;    Haploinsufficiency;    Complex karyotype;    Acute myeloid leukemia (AML);   
Others  :  1140558
DOI  :  10.1186/1471-2164-15-784
 received in 2014-03-04, accepted in 2014-09-08,  发布年份 2014
PDF
【 摘 要 】

Background

Acute myeloid leukemia with complex karyotype (CK-AML) is a distinct biological entity associated with a very poor outcome. Since complex karyotypes frequently contain deletions of the chromosomal region 12p13 encompassing the tumor suppressor genes ETV6 and CDKN1B, we aimed to unravel their modes of inactivation in CK-AML.

Results

To decipher deletions, mutations and methylation of ETV6 and CDKN1B, arrayCGH, SNP arrays, direct sequencing of all coding exons and pyrosequencing of the 5′UTR CpG islands of ETV6 and CDKN1B were performed. In total, 39 of 79 patients (49%) showed monoallelic deletions of 12p13 according to karyotypic data and 20 of 43 patients (47%) according to genomic profiling. Genomic profiling led to the minimal deleted region covering the 3′-UTR of ETV6 and CDKN1B. Direct sequencing revealed one novel monoallelic frameshift mutation in ETV6 while no mutations in CDKN1B were identified. Furthermore, methylation levels of ETV6 and CDKN1B did not indicate transcriptional silencing of any of these genes. ETV6 and CDKN1B had reduced expression levels in CK-AML patients with deletion in 12p13 as compared to CK-AML without deletion in 12p13, while the other genes (BCL2L14, LRP6, DUSP16 and GPRC5D) located within the minimal deleted region in 12p13 had very low or missing expression in CK-AML irrespective of their copy number status.

Conclusions

ETV6 and CDKN1B are mainly affected by small monoallelic deletions, whereas mutations and hypermethylation play a minor role in CK-AML. Reduced gene dosage led to reduced gene expression levels, pointing to haploinsufficiency as the relevant mechanism of inactivation of ETV6 and CDKN1B in CK-AML.

【 授权许可】

   
2014 Feurstein et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325043221221.pdf 1625KB PDF download
Figure 5. 70KB Image download
Figure 4. 80KB Image download
Figure 3. 62KB Image download
Figure 2. 116KB Image download
Figure 1. 134KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Schlenk RF, Dohner K, Krauter J, Frohling S, Corbacioglu A, Bullinger L, Habdank M, Spath D, Morgan M, Benner A, Schlegelberger B, Heil G, Ganser A, Dohner H, German-Austrian Acute Myeloid Leukemia Study, Group: Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008, 358(18):1909-1918.
  • [2]Haferlach T, Kern W, Schoch C, Schnittger S, Sauerland MC, Heinecke A, Buchner T, Hiddemann W, German AMLCG: A new prognostic score for patients with acute myeloid leukemia based on cytogenetics and early blast clearance in trials of the German AML Cooperative Group. Haematologica 2004, 89(4):408-418.
  • [3]Schoch C, Haferlach T, Haase D, Fonatsch C, Loffler H, Schlegelberger B, Staib P, Sauerland MC, Heinecke A, Buchner T, Hiddemann W, German A, German A. M. L. Cooperative Study Group: Patients with de novo acute myeloid leukaemia and complex karyotype aberrations show a poor prognosis despite intensive treatment: a study of 90 patients. Br J Haematol 2001, 112(1):118-126.
  • [4]Lindvall C, Furge K, Bjorkholm M, Guo X, Haab B, Blennow E, Nordenskjold M, Teh BT: Combined genetic and transcriptional profiling of acute myeloid leukemia with normal and complex karyotypes. Haematologica 2004, 89(9):1072-1081.
  • [5]Bowen D, Groves MJ, Burnett AK, Patel Y, Allen C, Green C, Gale RE, Hills R, Linch DC: TP53 gene mutation is frequent in patients with acute myeloid leukemia and complex karyotype, and is associated with very poor prognosis. Leukemia 2009, 23(1):203-206.
  • [6]Haferlach C, Dicker F, Herholz H, Schnittger S, Kern W, Haferlach T: Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype. Leukemia 2008, 22(8):1539-1541.
  • [7]Schoch C, Kern W, Kohlmann A, Hiddemann W, Schnittger S, Haferlach T: Acute myeloid leukemia with a complex aberrant karyotype is a distinct biological entity characterized by genomic imbalances and a specific gene expression profile. Genes Chromosomes Cancer 2005, 43(3):227-238.
  • [8]Byrd JC, Mrozek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC, Pettenati MJ, Patil SR, Rao KW, Watson MS, Koduru PR, Moore JO, Stone RM, Mayer RJ, Feldman EJ, Davey FR, Schiffer CA, Larson RA, Bloomfield CD, Cancer Leukemia Group B: Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 2002, 100(13):4325-4336.
  • [9]Kayser S, Zucknick M, Dohner K, Krauter J, Kohne CH, Horst HA, Held G, von Lilienfeld-Toal M, Wilhelm S, Rummel M, Germing U, Gotze K, Nachbaur D, Schlegelberger B, Gohring G, Spath D, Morlok C, Teleanu V, Ganser A, Dohner H, Schlenk RF, German-Austrian Acute Myeloid Leukemia Study, Group: Monosomal karyotype in adult acute myeloid leukemia: prognostic impact and outcome after different treatment strategies. Blood 2012, 119(2):551-558.
  • [10]Rucker FG, Bullinger L, Schwaenen C, Lipka DB, Wessendorf S, Frohling S, Bentz M, Miller S, Scholl C, Schlenk RF, Radlwimmer B, Kestler HA, Pollack JR, Lichter P, Dohner K, Dohner H: Disclosure of candidate genes in acute myeloid leukemia with complex karyotypes using microarray-based molecular characterization. J Clin Oncol 2006, 24(24):3887-3894.
  • [11]Montpetit A, Boily G, Sinnett D: A detailed transcriptional map of the chromosome 12p12 tumour suppressor locus. Eur J Hum Genet 2002, 10(1):62-71.
  • [12]Montpetit A, Larose J, Boily G, Langlois S, Trudel N, Sinnett D: Mutational and expression analysis of the chromosome 12p candidate tumor suppressor genes in pre-B acute lymphoblastic leukemia. Leukemia 2004, 18(9):1499-1504.
  • [13]Sato Y, Suto Y, Pietenpol J, Golub TR, Gilliland DG, Davis EM, Le Beau MM, Roberts JM, Vogelstein B, Rowley JD: TEL and KIP1 define the smallest region of deletions on 12p13 in hematopoietic malignancies. Blood 1995, 86(4):1525-1533.
  • [14]Andreasson P, Johansson B, Arheden K, Billstrom R, Mitelman F, Hoglund M: Deletions of CDKN1B and ETV6 in acute myeloid leukemia and myelodysplastic syndromes without cytogenetic evidence of 12p abnormalities. Gene Chromosome Canc 1997, 19(2):77-83.
  • [15]Baens M, Wlodarska I, Corveleyn A, Hoornaert I, Hagemeijer A, Marynen P: A physical, transcript, and deletion map of chromosome region 12p12.3 flanked by ETV6 and CDKN1B: hypermethylation of the LRP6 CpG island in two leukemia patients with hemizygous del(12p). Genomics 1999, 56(1):40-50.
  • [16]Le Toriellec E, Despouy G, Pierron G, Gaye N, Joiner M, Bellanger D, Vincent-Salomon A, Stern MH: Haploinsufficiency of CDKN1B contributes to leukemogenesis in T-cell prolymphocytic leukemia. Blood 2008, 111(4):2321-2328.
  • [17]Paige AJ: Redefining tumour suppressor genes: exceptions to the two-hit hypothesis. Cell Mol Life Sci 2003, 60(10):2147-2163.
  • [18]Fenrick R, Wang L, Nip J, Amann JM, Rooney RJ, Walker-Daniels J, Crawford HC, Hulboy DL, Kinch MS, Matrisian LM, Hiebert SW: TEL, a putative tumor suppressor, modulates cell growth and cell morphology of ras-transformed cells while repressing the transcription of stromelysin-1. Mol Cell Biol 2000, 20(16):5828-5839.
  • [19]Irvin BJ, Wood LD, Wang L, Fenrick R, Sansam CG, Packham G, Kinch M, Yang E, Hiebert SW: TEL, a putative tumor suppressor, induces apoptosis and represses transcription of Bcl-XL. J Biol Chem 2003, 278(47):46378-46386.
  • [20]Yamagata T, Maki K, Waga K, Mitani K: TEL/ETV6 induces apoptosis in 32D cells through p53-dependent pathways. Biochem Biophys Res Commun 2006, 347(2):517-526.
  • [21]Toyoshima H, Hunter T: p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 1994, 78(1):67-74.
  • [22]Choi Y, Sims GE, Murphy S, Miller JR, Chan AP: Predicting the functional effect of amino acid substitutions and indels. PLoS One 2012, 7(10):e46688.
  • [23]Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF, Tibshirani R, Dohner H, Pollack JR: Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 2004, 350(16):1605-1616.
  • [24]Kharas MG, Lengner CJ, Al-Shahrour F, Bullinger L, Ball B, Zaidi S, Morgan K, Tam W, Paktinat M, Okabe R, Gozo M, Einhorn W, Lane SW, Scholl C, Frohling S, Fleming M, Ebert BL, Gilliland DG, Jaenisch R, Daley GQ: Musashi-2 regulates normal hematopoiesis and promotes aggressive myeloid leukemia. Nat Med 2010, 16(8):903-908.
  • [25]Wall M, Rayeroux KC, MacKinnon RN, Zordan A, Campbell LJ: ETV6 deletion is a common additional abnormality in patients with myelodysplastic syndromes or acute myeloid leukemia and monosomy 7. Haematologica 2012, 97(12):1933-1936.
  • [26]Haferlach C, Bacher U, Kohlmann A, Schindela S, Alpermann T, Kern W, Schnitther S, Haferlach T: CDKN1B, encoding the cyclin-dependent kinase inhibitor 1B (p27), is located in the minimally deleted region of 12p abnormalities in myeloid malignancies and its low expression is a favorable prognostic marker in acute myeloid leukemia. Haematologica 2011, 96(6):829-36.
  • [27]Berger AH, Pandolfi PP: Haplo-insufficiency: a driving force in cancer. J Pathol 2011, 223(2):137-146.
  • [28]Santarosa M, Ashworth A: Haploinsufficiency for tumour suppressor genes: when you don't need to go all the way. Biochim Biophys Acta 2004, 1654(2):105-122.
  • [29]Wong JC, Le Beau MM, Shannon K: Tumor suppressor gene inactivation in myeloid malignancies. Best Pract Res Clin Haematol 2008, 21(4):601-614.
  • [30]Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ: The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 1998, 396(6707):177-180.
  • [31]Schoch C, Haferlach T, Bursch S, Gerstner D, Schnittger S, Dugas M, Kern W, Loffler H, Hiddemann W: Loss of genetic material is more common than gain in acute myeloid leukemia with complex aberrant karyotype: a detailed analysis of 125 cases using conventional chromosome analysis and fluorescence in situ hybridization including 24-color FISH. Gene Chromosome Canc 2002, 35(1):20-29.
  • [32]Baens M, Peeters P, Guo C, Aerssens J, Marynen P: Genomic organization of TEL: the human ETS-variant gene 6. Genome Res 1996, 6(5):404-413.
  • [33]Barjesteh van Waalwijk van Doorn-Khosrovani S, Spensberger D, de Knegt Y, Tang M, Lowenberg B, Delwel R: Somatic heterozygous mutations in ETV6 (TEL) and frequent absence of ETV6 protein in acute myeloid leukemia. Oncogene 2005, 24(25):4129-4137.
  • [34]Silva FP, Morolli B, Storlazzi CT, Zagaria A, Impera L, Klein B, Vrieling H, Kluin-Nelemans HC, Giphart-Gassler M: ETV6 mutations and loss in AML-M0. Leukemia 2008, 22(8):1639-1643.
  • [35]Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, Kantarjian H, Raza A, Levine RL, Neuberg D, Ebert BL: Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med 2011, 364(26):2496-2506.
  • [36]Wang LC, Kuo F, Fujiwara Y, Gilliland DG, Golub TR, Orkin SH: Yolk sac angiogenic defect and intra-embryonic apoptosis in mice lacking the Ets-related factor TEL. EMBO J 1997, 16(14):4374-4383.
  • [37]Markaki EA, Stiakaki E, Zafiropoulos A, Arvanitis DA, Katzilakis N, Dimitriou H, Spandidos DA, Kalmanti M: Mutational analysis of the cell cycle inhibitor Kip1/p27 in childhood leukemia. Pediatr Blood Cancer 2006, 47(1):14-21.
  • [38]Morosetti R, Kawamata N, Gombart AF, Miller CW, Hatta Y, Hirama T, Said JW, Tomonaga M, Koeffler HP: Alterations of the p27KIP1 gene in non-Hodgkin's lymphomas and adult T-cell leukemia/lymphoma. Blood 1995, 86(5):1924-1930.
  • [39]Chim CS, Wong AS, Kwong YL: Epigenetic inactivation of the CIP/KIP cell-cycle control pathway in acute leukemias. Am J Hematol 2005, 80(4):282-287.
  • [40]Schaffer L, McGowan-Jordan J, Schmid M: ISCN 2013:An international system for human cytogenetic nomenclature (2013). 2012.
  • [41]Rucker FG, Schlenk RF, Bullinger L, Kayser S, Teleanu V, Kett H, Habdank M, Kugler CM, Holzmann K, Gaidzik VI, Paschka P, Held G, von Lilienfeld-Toal M, Lubbert M, Frohling S, Zenz T, Krauter J, Schlegelberger B, Ganser A, Lichter P, Dohner K, Dohner H: TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood 2012, 119(9):2114-2121.
  • [42]Praulich I, Tauscher M, Gohring G, Glaser S, Hofmann W, Feurstein S, Flotho C, Lichter P, Niemeyer CM, Schlegelberger B, Steinemann D: Clonal heterogeneity in childhood myelodysplastic syndromes–challenge for the detection of chromosomal imbalances by array-CGH. Gene Chromosome Canc 2010, 49(10):885-900.
  • [43]Thorvaldsdottir H, Robinson JT, Mesirov JP: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013, 14(2):178-192.
  • [44]Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP: Integrative genomics viewer. Nat Biotechnol 2011, 29(1):24-26.
  • [45]RCT: R: A Language And Environment For Statistical Computing. I Vienna, Austria: R Foundation for Statistical computing; 2014.
  文献评价指标  
  下载次数:32次 浏览次数:13次