期刊论文详细信息
BMC Neuroscience
A genome-wide signature of glucocorticoid receptor binding in neuronal PC12 cells
Nicole A Datson1  E Ronald de Kloet2  Silvère M van der Maarel1  Judit Balog1  Robert T de Jonge2  Danny S Bosch2  Jennifer E Welten2  J Annelies E Polman2 
[1] Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, the Netherlands;Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University Medical Center, Leiden, 2333 CC, the Netherlands
关键词: ChIP-Seq;    PC12 cells;    Glucocorticoid response element;    Neuronal context;    Glucocorticoid receptor;   
Others  :  1140931
DOI  :  10.1186/1471-2202-13-118
 received in 2012-07-10, accepted in 2012-09-24,  发布年份 2012
PDF
【 摘 要 】

Background

Glucocorticoids, secreted by the adrenals in response to stress, profoundly affect structure and plasticity of neurons. Glucocorticoid action in neurons is mediated by glucocorticoid receptors (GR) that operate as transcription factors in the regulation of gene expression and either bind directly to genomic glucocorticoid response elements (GREs) or indirectly to the genome via interactions with bound transcription factors. These two modes of action, respectively called transactivation and transrepression, result in the regulation of a wide variety of genes important for neuronal function. The objective of the present study was to identify genome-wide glucocorticoid receptor binding sites in neuronal PC12 cells using Chromatin ImmunoPrecipitation combined with next generation sequencing (ChIP-Seq).

Results

In total we identified 1183 genomic binding sites of GR, the majority of which were novel and not identified in other ChIP-Seq studies on GR binding. More than half (58%) of the binding sites contained a GRE. The remaining 42% of the GBS did not harbour a GRE and therefore likely bind GR via an intermediate transcription factor tethering GR to the DNA. While the GRE-containing binding sites were more often located nearby genes involved in general cell functions and processes such as apoptosis, cell motion, protein dimerization activity and vasculature development, the binding sites without a GRE were located nearby genes with a clear role in neuronal processes such as neuron projection morphogenesis, neuron projection regeneration, synaptic transmission and catecholamine biosynthetic process. A closer look at the sequence of the GR binding sites revealed the presence of several motifs for transcription factors that are highly divergent from those previously linked to GR-signaling, including Gabpa, Prrx2, Zfp281, Gata1 and Zbtb3. These transcription factors may represent novel crosstalk partners of GR in a neuronal context.

Conclusions

Here we present the first genome-wide inventory of GR-binding sites in a neuronal context. These results provide an exciting first global view into neuronal GR targets and the neuron-specific modes of GR action and potentially contributes to our understanding of glucocorticoid action in the brain.

【 授权许可】

   
2012 Polman et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325154605119.pdf 1383KB PDF download
Figure 7. 48KB Image download
Figure 6. 75KB Image download
Figure 5. 59KB Image download
Figure 4. 21KB Image download
Figure 3. 62KB Image download
Figure 2. 23KB Image download
Figure 1. 20KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Chao HM, Choo PH, McEwen BS: Glucocorticoid and mineralocorticoid receptor mRNA expression in rat brain. Neuroendocrinology 1989, 50:365-371.
  • [2]Morimoto M, Morita N, Ozawa H, Yokoyama K, Kawata M: Distribution of glucocorticoid receptor immunoreactivity and mRNA in the rat brain: an immunohistochemical and in situ hybridization study. Neurosci Res 1996, 26:235-269.
  • [3]Sierra A, Gottfried-Blackmore A, Milner TA, McEwen BS, Bulloch K: Steroid hormone receptor expression and function in microglia. Glia 2008, 56:659-674.
  • [4]Vielkind U, Walencewicz A, Levine JM, Bohn MC: Type II glucocorticoid receptors are expressed in oligodendrocytes and astrocytes. J Neurosci Res 1990, 27:360-373.
  • [5]Schoneveld OJ, Gaemers IC, Lamers WH: Mechanisms of glucocorticoid signalling. Biochim Biophys Acta 2004, 1680:114-128.
  • [6]Biola A, Andreau K, David M, Sturm M, Haake M, Bertoglio J, Pallardy M: The glucocorticoid receptor and STAT6 physically and functionally interact in T-lymphocytes. FEBS Lett 2000, 487:229-233.
  • [7]Kassel O, Herrlich P: Crosstalk between the glucocorticoid receptor and other transcription factors: molecular aspects. Mol Cell Endocrinol 2007, 275:13-29.
  • [8]Yamamoto KR, Darimont BD, Wagner RL, Iniguez-Lluhi JA: Building transcriptional regulatory complexes: signals and surfaces. Cold Spring Harb Symp Quant Biol 1998, 63:587-598.
  • [9]De Bosscher K, Vanden Berghe W, Haegeman G: Cross-talk between nuclear receptors and nuclear factor kappaB. Oncogene 2006, 25:6868-6886.
  • [10]Gauthier JM, Bourachot B, Doucas V, Yaniv M, Moreau-Gachelin F: Functional interference between the Spi-1/PU.1 oncoprotein and steroid hormone or vitamin receptors. EMBO J 1993, 12:5089-5096.
  • [11]Imai E, Miner JN, Mitchell JA, Yamamoto KR, Granner DK: Glucocorticoid receptor-cAMP response element-binding protein interaction and the response of the phosphoenolpyruvate carboxykinase gene to glucocorticoids. J Biol Chem 1993, 268:5353-5356.
  • [12]Jonat C, Rahmsdorf HJ, Park KK, Cato AC, Gebel S, Ponta H, Herrlich P: Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 1990, 62:1189-1204.
  • [13]Schule R, Rangarajan P, Kliewer S, Ransone LJ, Bolado J, Yang N, Verma IM, Evans RM: Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor. Cell 1990, 62:1217-1226.
  • [14]Song CZ, Tian X, Gelehrter TD: Glucocorticoid receptor inhibits transforming growth factor-beta signaling by directly targeting the transcriptional activation function of Smad3. Proc Natl Acad Sci USA 1999, 96:11776-11781.
  • [15]Stocklin E, Wissler M, Gouilleux F, Groner B: Functional interactions between Stat5 and the glucocorticoid receptor. Nature 1996, 383:726-728.
  • [16]Wieland S, Dobbeling U, Rusconi S: Interference and synergism of glucocorticoid receptor and octamer factors. EMBO J 1991, 10:2513-2521.
  • [17]Chebotaev D, Yemelyanov A, Budunova I: The mechanisms of tumor suppressor effect of glucocorticoid receptor in skin. Mol Carcinog 2007, 46:732-740.
  • [18]De Bosscher K, Van CK, Meijer OC, Haegeman G: Selective transrepression versus transactivation mechanisms by glucocorticoid receptor modulators in stress and immune systems. Eur J Pharmacol 2008, 583:290-302.
  • [19]Glass CK, Saijo K: Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol 2010, 10:365-376.
  • [20]Datson NA, Morsink MC, Meijer OC, de Kloet ER: Central corticosteroid actions: Search for gene targets. Eur J Pharmacol 2008, 583:272-289.
  • [21]Datson NA, van der Perk J, de Kloet ER, Vreugdenhil E: Identification of corticosteroid-responsive genes in rat hippocampus using serial analysis of gene expression. Eur J Neurosci 2001, 14:675-689.
  • [22]Datson NA, van der Perk J, de Kloet ER, Vreugdenhil E: Expression profile of 30,000 genes in rat hippocampus using SAGE. Hippocampus 2001, 11:430-444.
  • [23]Datson NA, Meijer L, Steenbergen PJ, Morsink MC, van der Laan S, Meijer OC, de Kloet ER: Expression profiling in laser-microdissected hippocampal subregions in rat brain reveals large subregion-specific differences in expression. Eur J Neurosci 2004, 20:2541-2554.
  • [24]Pan D, Kocherginsky M, Conzen SD: Activation of the glucocorticoid receptor is associated with poor prognosis in estrogen receptor-negative breast cancer. Cancer Res 2011, 71:6360-6370.
  • [25]John S, Sabo PJ, Thurman RE, Sung MH, Biddie SC, Johnson TA, Hager GL, Stamatoyannopoulos JA: Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat Genet 2011, 43:264-268.
  • [26]Reddy TE, Pauli F, Sprouse RO, Neff NF, Newberry KM, Garabedian MJ, Myers RM: Genomic determination of the glucocorticoid response reveals unexpected mechanisms of gene regulation. Genome Res 2009, 19:2163-2171.
  • [27]Yu CY, Mayba O, Lee JV, Tran J, Harris C, Speed TP, Wang JC: Genome-wide analysis of glucocorticoid receptor binding regions in adipocytes reveal gene network involved in triglyceride homeostasis. PLoS One 2010, 5:e15188.
  • [28]Greene LA, Tischler AS: Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 1976, 73:2424-2428.
  • [29]Allen JM, Martin JB, Heinrich G: Neuropeptide Y gene expression in PC12 cells and its regulation by nerve growth factor: a model for developmental regulation. Brain Res 1987, 427:39-43.
  • [30]Taupenot L: Analysis of regulated secretion using PC12 cells. Curr Protoc Cell Biol 2007, 15:12. Chapter 15.12:Unit
  • [31]Morsink MC, Joels M, Sarabdjitsingh RA, Meijer OC, de Kloet ER, Datson NA: The dynamic pattern of glucocorticoid receptor-mediated transcriptional responses in neuronal PC12 cells. J Neurochem 2006, 99:1282-1298.
  • [32]Sotiropoulos I, Catania C, Riedemann T, Fry JP, Breen KC, Michaelidis TM, Almeida OF: Glucocorticoids trigger Alzheimer disease-like pathobiochemistry in rat neuronal cells expressing human tau. J Neurochem 2008, 107:385-397.
  • [33]Yang TT, Tsao CW, Li JS, Wu HT, Hsu CT, Cheng JT: Changes of dopamine content and cell proliferation by dexamethsone via pituitary adenylate cyclase-activating polypeptide in PC12 cell. Neurosci Lett 2007, 426:45-48.
  • [34]Rani CS, Elango N, Wang SS, Kobayashi K, Strong R: Identification of an activator protein-1-like sequence as the glucocorticoid response element in the rat tyrosine hydroxylase gene. Mol Pharmacol 2009, 75:589-598.
  • [35]Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D: The human genome browser at UCSC. Genome Res 2002, 12:996-1006.
  • [36]Kapranov P: From transcription start site to cell biology. Genome Biol 2009, 10:217. BioMed Central Full Text
  • [37]Goecks J, Nekrutenko A, Taylor J: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 2010, 11:R86. BioMed Central Full Text
  • [38]Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4:44-57.
  • [39]Huang DW, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37:1-13.
  • [40]Viguerie N, Picard F, Hul G, Roussel B, Barbe P, Iacovoni JS, Valle C, Langin D, Saris WH: Multiple effects of a short-term dexamethasone treatment in human skeletal muscle and adipose tissue. Physiol Genomics 2012, 44:141-151.
  • [41]Masuno K, Haldar SM, Jeyaraj D, Mailloux CM, Huang X, Panettieri RA Jr, Jain MK, Gerber AN: Expression profiling identifies Klf15 as a glucocorticoid target that regulates airway hyperresponsiveness. Am J Respir Cell Mol Biol 2011, 45:642-649.
  • [42]Kinyamu HK, Collins JB, Grissom SF, Hebbar PB, Archer TK: Genome wide transcriptional profiling in breast cancer cells reveals distinct changes in hormone receptor target genes and chromatin modifying enzymes after proteasome inhibition. Mol Carcinog 2008, 47:845-885.
  • [43]Ruiz-Llorente S, de Santa PE C, Sastre-Perona A, Montero-Conde C, Gomez-Lopez G, Fagin JA, Valencia A, Pisano DG, Santisteban P: Genome Wide Analysis Of Pax8 Binding Provides New Insights Into Thyroid Functions. BMC Genomics 2012, 13:147. BioMed Central Full Text
  • [44]Jilg A, Lesny S, Peruzki N, Schwegler H, Selbach O, Dehghani F, Stehle JH: Temporal dynamics of mouse hippocampal clock gene expression support memory processing. Hippocampus 2010, 20:377-388.
  • [45]Conway-Campbell BL, Sarabdjitsingh RA, McKenna MA, Pooley JR, Kershaw YM, Meijer OC, de Kloet ER, Lightman SL: Glucocorticoid ultradian rhythmicity directs cyclical gene pulsing of the clock gene period 1 in rat hippocampus. J Neuroendocrinol 2010, 22:1093-1100.
  • [46]Biddie SC, John S, Hager GL: Genome-wide mechanisms of nuclear receptor action. Trends Endocrinol Metab 2010, 21:3-9.
  • [47]Goshima Y, Ito T, Sasaki Y, Nakamura F: Semaphorins as signals for cell repulsion and invasion. J Clin Invest 2002, 109:993-998.
  • [48]Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, Tessier-Lavigne M, Kidd T: Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 1999, 96:795-806.
  • [49]Kim J, Hoffman DA: Potassium channels: newly found players in synaptic plasticity. Neuroscientist 2008, 14:276-286.
  • [50]Fernandez-Chacon R, Konigstorfer A, Gerber SH, Garcia J, Matos MF, Stevens CF, Brose N, Rizo J, Rosenmund C, Sudhof TC: Synaptotagmin I functions as a calcium regulator of release probability. Nature 2001, 410:41-49.
  • [51]Hutchins AP, Poulain S, Miranda-Saavedra D: Genome-wide analysis of STAT3 binding in vivo predicts effectors of the anti-inflammatory response in macrophages. Blood 2012, 119:e110-e119.
  • [52]Yang-Yen HF, Chambard JC, Sun YL, Smeal T, Schmidt TJ, Drouin J, Karin M: Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 1990, 62:1205-1215.
  • [53]Biddie SC, John S, Sabo PJ, Thurman RE, Johnson TA, Schiltz RL, Miranda TB, Sung MH, Trump S, Lightman SL, Vinson C, Stamatoyannopoulos JA, Hager GL: Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol Cell 2011, 43:145-155.
  • [54]Wang J, Rao S, Chu J, Shen X, Levasseur DN, Theunissen TW, Orkin SH: A protein interaction network for pluripotency of embryonic stem cells. Nature 2006, 444:364-368.
  • [55]Wang ZX, Teh CH, Chan CM, Chu C, Rossbach M, Kunarso G, Allapitchay TB, Wong KY, Stanton LW: The transcription factor Zfp281 controls embryonic stem cell pluripotency by direct activation and repression of target genes. Stem Cells 2008, 26:2791-2799.
  • [56]Datson NA, Polman JA, de Jonge RT, van Boheemen PT, van Maanen EM, Welten J, McEwen BS, Meiland HC, Meijer OC: Specific regulatory motifs predict glucocorticoid responsiveness of hippocampal gene expression. Endocrinology 2011, 152:3749-3757.
  • [57]Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, et al.: Genome-wide atlas of gene expression in the adult mouse brain. Nature 2007, 445:168-176.
  • [58]Bruni F, Polosa PL, Gadaleta MN, Cantatore P, Roberti M: Nuclear respiratory factor 2 induces the expression of many but not all human proteins acting in mitochondrial DNA transcription and replication. J Biol Chem 2010, 285:3939-3948.
  • [59]Ongwijitwat S, Wong-Riley MT: Is nuclear respiratory factor 2 a master transcriptional coordinator for all ten nuclear-encoded cytochrome c oxidase subunits in neurons? Gene 2005, 360:65-77.
  • [60]Ongwijitwat S, Liang HL, Graboyes EM, Wong-Riley MT: Nuclear respiratory factor 2 senses changing cellular energy demands and its silencing down-regulates cytochrome oxidase and other target gene mRNAs. Gene 2006, 374:39-49.
  • [61]Gutsaeva DR, Suliman HB, Carraway MS, Demchenko IT, Piantadosi CA: Oxygen-induced mitochondrial biogenesis in the rat hippocampus. Neuroscience 2006, 137:493-504.
  • [62]Balic A, Adams D, Mina M: Prx1 and Prx2 cooperatively regulate the morphogenesis of the medial region of the mandibular process. Dev Dyn 2009, 238:2599-2613.
  • [63]Susa T, Ishikawa A, Kato T, Nakayama M, Kato Y: Molecular cloning of paired related homeobox 2 (prx2) as a novel pituitary transcription factor. J Reprod Dev 2009, 55:502-511.
  • [64]Ferreira R, Ohneda K, Yamamoto M, Philipsen S: GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol 2005, 25:1215-1227.
  • [65]Chang TJ, Scher BM, Waxman S, Scher W: Inhibition of mouse GATA-1 function by the glucocorticoid receptor: possible mechanism of steroid inhibition of erythroleukemia cell differentiation. Mol Endocrinol 1993, 7:528-542.
  • [66]Kumar S: Remote homologue identification of Drosophila GAGA factor in mouse. Bioinformation 2011, 7:29-32.
  • [67]Bardwell VJ, Treisman R: The POZ domain: a conserved protein-protein interaction motif. Genes Dev 1994, 8:1664-1677.
  • [68]Deweindt C, Albagli O, Bernardin F, Dhordain P, Quief S, Lantoine D, Kerckaert JP, Leprince D: The LAZ3/BCL6 oncogene encodes a sequence-specific transcriptional inhibitor: a novel function for the BTB/POZ domain as an autonomous repressing domain. Cell Growth Differ 1995, 6:1495-1503.
  • [69]Huynh KD, Bardwell VJ: The BCL-6 POZ domain and other POZ domains interact with the co-repressors N-CoR and SMRT. Oncogene 1998, 17:2473-2484.
  • [70]Nelson JD, Denisenko O, Bomsztyk K: Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 2006, 1:179-185.
  • [71]Blankenberg D, Von KG, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J: Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol 2010, 19(10):1-21. Chapter 19.10.1-21:Unit
  • [72]Bailey TL, Elkan C: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 1994, 2:28-36.
  • [73]Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS: Quantifying similarity between motifs. Genome Biol 2007, 8:R24. BioMed Central Full Text
  • [74]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001, 25:402-408.
  文献评价指标  
  下载次数:19次 浏览次数:2次