期刊论文详细信息
BMC Systems Biology
Boolean ErbB network reconstructions and perturbation simulations reveal individual drug response in different breast cancer cell lines
Tim Beißbarth2  Ulrike Korf3  Johanna Sonntag3  Frauke Henjes4  Christian Bender1  Silvia Von der Heyde2 
[1] TRON - Translational Oncology at the University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;Statistical Bioinformatics, Department of Medical Statistics, University Medical Center Göttingen, Humboldtallee 32, 37073 Göttingen, Germany;Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany;Science for Life Laboratory, School of Biotechnology, KTH - Royal Institute of Technology, Box 1031, 17121 Solna, Sweden
关键词: Drug resistance;    Breast cancer cell line;    Boolean model;    Network reconstruction;    RPPA;    ErbB;   
Others  :  864923
DOI  :  10.1186/1752-0509-8-75
 received in 2013-12-20, accepted in 2014-06-10,  发布年份 2014
PDF
【 摘 要 】

Background

Despite promising progress in targeted breast cancer therapy, drug resistance remains challenging. The monoclonal antibody drugs trastuzumab and pertuzumab as well as the small molecule inhibitor erlotinib were designed to prevent ErbB-2 and ErbB-1 receptor induced deregulated protein signalling, contributing to tumour progression. The oncogenic potential of ErbB receptors unfolds in case of overexpression or mutations. Dimerisation with other receptors allows to bypass pathway blockades. Our intention is to reconstruct the ErbB network to reveal resistance mechanisms. We used longitudinal proteomic data of ErbB receptors and downstream targets in the ErbB-2 amplified breast cancer cell lines BT474, SKBR3 and HCC1954 treated with erlotinib, trastuzumab or pertuzumab, alone or combined, up to 60 minutes and 30 hours, respectively. In a Boolean modelling approach, signalling networks were reconstructed based on these data in a cell line and time course specific manner, including prior literature knowledge. Finally, we simulated network response to inhibitor combinations to detect signalling nodes reflecting growth inhibition.

Results

The networks pointed to cell line specific activation patterns of the MAPK and PI3K pathway. In BT474, the PI3K signal route was favoured, while in SKBR3, novel edges highlighted MAPK signalling. In HCC1954, the inferred edges stimulated both pathways. For example, we uncovered feedback loops amplifying PI3K signalling, in line with the known trastuzumab resistance of this cell line. In the perturbation simulations on the short-term networks, we analysed ERK1/2, AKT and p70S6K. The results indicated a pathway specific drug response, driven by the type of growth factor stimulus. HCC1954 revealed an edgetic type of PIK3CA-mutation, contributing to trastuzumab inefficacy. Drug impact on the AKT and ERK1/2 signalling axes is mirrored by effects on RB and RPS6, relating to phenotypic events like cell growth or proliferation. Therefore, we additionally analysed RB and RPS6 in the long-term networks.

Conclusions

We derived protein interaction models for three breast cancer cell lines. Changes compared to the common reference network hint towards individual characteristics and potential drug resistance mechanisms. Simulation of perturbations were consistent with the experimental data, confirming our combined reverse and forward engineering approach as valuable for drug discovery and personalised medicine.

【 授权许可】

   
2014 von der Heyde et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140726020802358.pdf 4082KB PDF download
73KB Image download
75KB Image download
Figure 1. 98KB Image download
26KB Image download
84KB Image download
87KB Image download
84KB Image download
104KB Image download
94KB Image download
129KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Hill SM, Lu Y, Molina J, Heiser LM, Spellman PT, Speed TP, Gray JW, Mills GB, Mukherjee S: Bayesian inference of signaling network topology in a cancer cell line. Bioinformatics (Oxford, England) 2012, 28(21):2804-2810. PMID: 22923301
  • [2]Park Y, Bader JS: How networks change with time. Bioinformatics (Oxford, England) 2012, 28(12):40-48. PMID: 22689777
  • [3]Roukos DH: Trastuzumab and beyond: sequencing cancer genomes and predicting molecular networks. Pharmacogenom J 2011, 11(2):81-92. PMID: 20975737
  • [4]Oda K, Matsuoka Y, Funahashi A, Kitano H: A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 2005, 1:2005.0010. PMID: 16729045
  • [5]Feiglin A, Hacohen A, Sarusi A, Fisher J, Unger R, Ofran Y: Static network structure can be used to model the phenotypic effects of perturbations in regulatory networks. Bioinformatics (Oxford, England) 2012, 28(21):2811-2818. PMID: 22923292
  • [6]Bender C, Heyde SV, Henjes F, Wiemann S, Korf U, Beissbarth T: Inferring signalling networks from longitudinal data using sampling based approaches in the r-package ‘ddepn’. BMC Bioinformatics 2011, 12:291. PMID: 21771315
  • [7]Penfold CA, Buchanan-Wollaston V, Denby KJ, Wild DL: Nonparametric bayesian inference for perturbed and orthologous gene regulatory networks. Bioinformatics 2012, 28(12):233-241. PMID: 22689766
  • [8]Wagner JP, Wolf-Yadlin A, Sevecka M, Grenier JK, Root DE, Lauffenburger DA, MacBeath G: Receptor tyrosine kinases fall into distinct classes based on their inferred signaling networks. Sci Signaling 2013, 6(284):58.
  • [9]Chen WW, Schoeberl B, Jasper PJ, Niepel M, Nielsen UB, Lauffenburger DA, Sorger PK: Input-output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol Syst Biol 2009, 5:PMID: 19156131.
  • [10]Hatakeyama M, Kimura S, Naka T, Kawasaki T, Yumoto N, Ichikawa M, Kim J-H, Saito K, Saeki M, Shirouzu M, Yokoyama S, Konagaya A: A computational model on the modulation of mitogen-activated protein kinase (MAPK) and akt pathways in heregulin-induced ErbB signalling. Biochem J 2003, 373(Pt 2):451-463. PMID: 12691603
  • [11]Jones RB, Gordus A, Krall JA, MacBeath G: A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 2006, 439(7073):168-174. PMID: 16273093
  • [12]Schoeberl B, Eichler-Jonsson C, Gilles ED, Müller G: Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 2002, 20(4):370-375. PMID: 11923843
  • [13]Sahin O, FrÃűhlich H, LÃűbke C, Korf U, Burmester S, Majety M, Mattern J, Schupp I, Chaouiya C, Thieffry D, Poustka A, Wiemann S, Beissbarth T, Arlt D: Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Syst Biol 2009, 3:1. PMID: 19118495
  • [14]Samaga R, Saez-Rodriguez J, Alexopoulos LG, Sorger PK, Klamt S: The logic of EGFR/ErbB signaling: theoretical properties and analysis of high-throughput data. PLoS Comput Biol 2009, 5(8):1000438. PMID: 19662154
  • [15]Wang R-S, Saadatpour A, Albert R: Boolean modeling in systems biology: an overview of methodology and applications. Phys Biol 2012, 9(5):055001.
  • [16]McDermott JE, Wang J, Mitchell H, Webb-Robertson B-J, Hafen R, Ramey J, Rodland KD: Challenges in biomarker discovery: Combining expert insights with statistical analysis of complex omics data. Expert Opin Med Diag 2013, 7(1):37-51. PMID: 23335946
  • [17]Eduati F, De Las Rivas J, Di Camillo B, Toffolo G, Saez-Rodriguez J: Integrating literature-constrained and data-driven inference of signalling networks. Bioinformatics (Oxford, England) 2012, 28(18):2311-2317. PMID: 22734019
  • [18]Terfve C, Cokelaer T, Henriques D, Goncalves E, Morris MK, van Iersel M, Lauffenburger DA, Saez-Rodriguez J, MacNamara A: CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms. BMC Syst Biol 2012, 6:133. PMID: 23079107
  • [19]Albert I, Thakar J, Li S, Zhang R, Albert R: Boolean network simulations for life scientists. Source Code Biol Med 2008, 3:16. PMID: 19014577
  • [20]R Core Team: R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2012. R Foundation for Statistical Computing. ISBN 3-900051-07-0. http://www.r-project.org webcite.
  • [21]Müssel C, Hopfensitz M, Kestler HA: BoolNet–an r package for generation, reconstruction and analysis of boolean networks. Bioinformatics (Oxford, England) 2010, 26(10):PMID: 20378558.
  • [22]Samaga R, Klamt S: Modeling approaches for qualitative and semi-quantitative analysis of cellular signaling networks. Cell Commun Signaling: CCS 2013, 11(1):43. PMID: 23803171 PMCID: PMC3698152
  • [23]Gonzalez AG, Naldi A, Sánchez L, Thieffry D, Chaouiya C: GINsim: a software suite for the qualitative modelling, simulation and analysis of regulatory networks. Bio Syst 2006, 84(2):91-100. PMID: 16434137
  • [24]Di Cara A, Garg A, De Micheli G, Xenarios I, Mendoza L: Dynamic simulation of regulatory networks using SQUAD. BMC Bioinformatics 2007, 8:462. PMID: 18039375 PMCID: PMC2238325
  • [25]Helikar T, Rogers JA: ChemChains: a platform for simulation and analysis of biochemical networks aimed to laboratory scientists. BMC Syst Biol 2009, 3:58. PMID: 19500393 PMCID: PMC2705353
  • [26]Krumsiek J, Pösterl S, Wittmann DM, Theis FJ: Odefy–from discrete to continuous models. BMC Bioinformatics 2010, 11:233. PMID: 20459647 PMCID: PMC2873544
  • [27]Ferlay J, Shin H-R, Bray F, Forman D, Mathers C, Parkin DM: Estimates of worldwide burden of cancer in 2008: Globocan 2008. Int J Cancer 2010, 127(12):2893-2917.
  • [28]Henjes F, Bender C, Heyde SVD, Braun L, Mannsperger HA, Schmidt C, Wiemann S, Hasmann M, Aulmann S, Beissbarth T, Korf U: Strong EGFR signaling in cell line models of ERBB2-amplified breast cancer attenuates response towards ERBB2-targeting drugs. Oncogenesis 2012, 1(7):16.
  • [29]Olayioye MA, Neve RM, Lane HA, Hynes NE: The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 2000, 19(13):PMID: 10880430.
  • [30]Heil J, Gondos A, Rauch G, Marmé F, Rom J, Golatta M, Junkermann H, Sinn P, Aulmann S, Debus J, Hof H, Schütz F, Brenner H, Sohn C, Schneeweiss A: Outcome analysis of patients with primary breast cancer initially treated at a certified academic breast unit. Breast (Edinburgh, Scotland) 2012, 21(3):303-308. PMID: 22310244
  • [31]Jelovac D, Wolff AC: The adjuvant treatment of HER2-positive breast cancer. Curr Treat Options Oncol 2012, 13(2):230-239. PMID: 22410709
  • [32]Park JW, Neve RM, Szollosi J, Benz CC: Unraveling the biologic and clinical complexities of HER2. Clin Breast Cancer 2008, 8(5):392-401. PMID: 18952552
  • [33]Tinoco G, Warsch S, Glück S, Avancha K, Montero AJ: Treating breast cancer in the 21st century: emerging biological therapies. J Cancer 2013, 4(2):117-132. PMID: 23386910
  • [34]Heyde Svd, Beissbarth T: A new analysis approach of epidermal growth factor receptor pathway activation patterns provides insights into cetuximab resistance mechanisms in head and neck cancer. BMC Medicine 2012, 10(1):43. PMID: 22548923
  • [35]Motoyama AB, Hynes NE, Lane HA: The efficacy of ErbB receptor-targeted anticancer therapeutics is influenced by the availability of epidermal growth factor-related peptides. Cancer Res 2002, 62(11):3151-3158.
  • [36]Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, Peng J, Lin E, Wang Y, Sosman J, Ribas A, Li J, Moffat J, Sutherlin DP, Koeppen H, Merchant M, Neve R, Settleman J: Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 2012, 487(7408):505-509. PMID: 22763448
  • [37]Gallardo A, Lerma E, Escuin D, Tibau A, Muñoz J, Ojeda B, Barnadas A, Adrover E, Sánchez-Tejada L, Giner D, Ortiz-Martínez F, Peiró G: Increased signalling of EGFR and IGF1R, and deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance in HER2 breast carcinomas. Br J Cancer 2012, 106(8):1367-1373. PMID: 22454081
  • [38]Wang L, Zhang Q, Zhang J, Sun S, Guo H, Jia Z, Wang B, Shao Z, Wang Z, Hu X: PI3K pathway activation results in low efficacy of both trastuzumab and lapatinib. BMC Cancer 2011, 11:248. PMID: 21676217
  • [39]Diermeier S, HorvÃąth G, Knuechel-Clarke R, Hofstaedter F, Söllosi J, Brockhoff G: Epidermal growth factor receptor coexpression modulates susceptibility to herceptin in HER2/neu overexpressing breast cancer cells via specific erbB-receptor interaction and activation. Exp Cell Res 2005, 304(2):604-619. PMID: 15748904
  • [40]Pallis AG, Syrigos KN: Epidermal growth factor receptor tyrosine kinase inhibitors in the treatment of NSCLC. Lung cancer (Amsterdam, Netherlands) (2013). PMID: 23384674
  • [41]Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, Au HJ, Murawa P, Walde D, Wolff RA, Campos D, Lim R, Ding K, Clark G, Voskoglou-Nomikos T, Ptasynski M, Parulekar W, National Cancer, Institute of Canada Clinical Trials Group: Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the national cancer institute of canada clinical trials group. J Clin Oncol 2007, 25(15):1960-1966. PMID: 17452677
  • [42]Loebke C, Sueltmann H, Schmidt C, Henjes F, Wiemann S, Poustka A, Korf U: Infrared-based protein detection arrays for quantitative proteomics. PROTEOMICS 2007, 7(4):558-564.
  • [43]Kataoka Y, Mukohara T, Shimada H, Saijo N, Hirai M, Minami H: Association between gain-of-function mutations in PIK3CA and resistance to HER2-targeted agents in HER2-amplified breast cancer cell lines. Ann Oncol 2010, 21(2):255-262. PMID: 19633047
  • [44]Nahta R, Yuan LXH, Zhang B, Kobayashi R, Esteva FJ: Insulin-like growth factor-i receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 2005, 65(23):11118-11128. PMID: 16322262
  • [45]Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, Sullivan M: PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 2011, 40(D1):261-270.
  • [46]FrÃűhlich H, Sahin O, Arlt D, Bender C, Beissbarth T: Deterministic effects propagation networks for reconstructing protein signaling networks from multiple interventions. BMC Bioinformatics 2009, 10:322. PMID: 19814779
  • [47]Bender C, Henjes F, Fröhlich H, Wiemann S, Korf U, Beissbarth T: Dynamic deterministic effects propagation networks: learning signalling pathways from longitudinal protein array data. Bioinformatics (Oxford, England) 2010, 26(18):596-602. PMID: 20823327
  • [48]Almudevar A, McCall MN, McMurray H, Land H: Fitting boolean networks from steady state perturbation data. Stat Appl Genet Mol Biol 2011, 10(1):1-40.
  • [49]Brooks SP, Gelman A: General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 1998, 7(4):434-455.
  • [50]Benjamini Y, Hochberg Y: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Series B (Methodological) 1995, 57(1):289-300. ArticleType: research-article/Full publication date: 1995/Copyright Ⓒ1995 Royal Statistical Society
  • [51]Odenbrett MR, Wijs A, Ligtenberg W, Hilbers P, Bo Na Ki, D: Efficient reconstruction of biological networks via transitive reduction on general purpose graphics processors. BMC Bioinformatics 2012, 13(1):PMID: 23110660.
  • [52]Mikalsen T, Gerits N, Moens U: Inhibitors of signal transduction protein kinases as targets for cancer therapy. In M Raafat El-Gewely (ed.) Biotechnology Annual Review. Elsevier; 153-223. ISBN: 1387-2656 2006. http://www.sciencedirect.com/science/article/pii/S1387265606120062 webcite.
  • [53]Dienstmann R, De Dosso S, Felip E, Tabernero J: Drug development to overcome resistance to EGFR inhibitors in lung and colorectal cancer. Mol Oncol 2012, 6(1):15-26.
  • [54]Esteva FJ, Pusztai L: Optimizing outcomes in HER2-positive breast cancer: the molecular rationale. Oncology (Williston Park, N.Y.) 2005, 19(13 Suppl 5):5-16. PMID: 19364051
  • [55]Sato S, Fujita N, Tsuruo T: Involvement of 3-phosphoinositide-dependent protein kinase-1 in the MEK/MAPK signal transduction pathway. J Biol Chem 2004, 279(32):33759-33767. PMID: 15175348
  • [56]Maurer M, Su T, Saal LH, Koujak S, Hopkins BD, Barkley CR, Wu J, Nandula S, Dutta B, Xie Y, Chin YR, Kim D-I, Ferris JS, Gruvberger-Saal SK, Laakso M, Wang X, Memeo L, Rojtman A, Matos T, Yu JS, Cordon-Cardo C, Isola J, Terry MB, Toker A, Mills GB, Zhao JJ, Murty VVVS, Hibshoosh H, Parsons R: 3-phosphoinositide-dependent kinase 1 potentiates upstream lesions on the phosphatidylinositol 3-kinase pathway in breast carcinoma. Cancer Res 2009, 69(15):6299-6306. PMID: 19602588
  • [57]Tseng P-H, Wang Y-C, Weng S-C, Weng J-R, Chen C-S, Brueggemeier RW, Shapiro CL, Chen C-Y, Dunn SE, Pollak M, Chen C-S: Overcoming trastuzumab resistance in HER2-overexpressing breast cancer cells by using a novel celecoxib-derived phosphoinositide-dependent kinase-1 inhibitor. Mol Pharmacol 2006, 70(5):PMID: 16887935.
  • [58]Vega F, Medeiros LJ, Leventaki V, Atwell C, Cho-Vega JH, Tian L, Claret F-X, Rassidakis GZ: Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res 2006, 66(13):6589-6597. PMID: 16818631
  • [59]Frödin M, Jensen CJ, Merienne K, Gammeltoft S: A phosphoserine-regulated docking site in the protein kinase RSK2 that recruits and activates PDK1. EMBO J 2000, 19(12):2924-2934. PMID: 10856237
  • [60]Klos KS, Wyszomierski SL, Sun M, Tan M, Zhou X, Li P, Yang W, Yin G, Hittelman WN, Yu D: ErbB2 increases vascular endothelial growth factor protein synthesis via activation of mammalian target of rapamycin/p70S6K leading to increased angiogenesis and spontaneous metastasis of human breast cancer cells. Cancer Res 2006, 66(4):2028-2037. PMID: 16489002
  • [61]Schaefer G, Shao L, Totpal K, Akita RW: Erlotinib directly inhibits HER2 kinase activation and downstream signaling events in intact cells lacking epidermal growth factor receptor expression. Cancer Res 2007, 67(3):1228-1238. PMID: 17283159
  • [62]Zhong Q, Simonis N, Li Q-R, Charloteaux B, Heuze F, Klitgord N, Tam S, Yu H, Venkatesan K, Mou D, Swearingen V, Yildirim MA, Yan H, Dricot A, Szeto D, Lin C, Hao T, Fan C, Milstein S, Dupuy D, Brasseur R, Hill DE, Cusick ME, Vidal M: Edgetic perturbation models of human inherited disorders. Mol Syst Biol 2009, 5:321. PMID: 19888216
  • [63]Connor TM, Knudson CM, Korsmeyer SJ, Lowe SW, McCurrach ME: bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc Nat Acad Sci USA 1997, 94(6):2345-2349. PMID: 9122197
  • [64]Sherr CJ, McCormick F: The RB and p53 pathways in cancer. Cancer Cell 2002, 2(2):103-112. PMID: 12204530
  • [65]Sithanandam G, Anderson LM: The ERBB3 receptor in cancer and cancer gene therapy. Cancer Gene Therapy 2008, 15(7):413-448. PMID: 18404164
  • [66]Lynch DK, Daly RJ: PKB-mediated negative feedback tightly regulates mitogenic signalling via gab2. EMBO J 2002, 21(1-2):72-82. PMID: 11782427
  • [67]Chakrabarty A, Sánchez V, Kuba MG, Rinehart C, Arteaga CL: Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors. Proc Nat Acad Sci USA 2012, 109(8):2718-2723. PMID: 21368164
  • [68]Abrieu A, Dorée M, Fisher D: The interplay between cyclin-b-cdc2 kinase (MPF) and MAP kinase during maturation of oocytes. J Cell Sci 2001, 114(Pt 2):257-267. PMID: 11148128
  • [69]Jirmanova L, Afanassieff M, Gobert-Gosse S, Markossian S, Savatier P: Differential contributions of ERK and PI3-kinase to the regulation of cyclin d1 expression and to the control of the G1/S transition in mouse embryonic stem cells. Oncogene 2002, 21(36):5515-5528. PMID: 12165850
  • [70]Searle JS, Li B, Du W: Targeting rb mutant cancers by inactivating TSC2. Oncotarget 2010, 1(3):228-232. PMID: 20706560
  • [71]Liu H, Radisky DC, Nelson CM, Zhang H, Fata JE, Roth RA, Bissell MJ: Mechanism of akt1 inhibition of breast cancer cell invasion reveals a protumorigenic role for TSC2. Proc Nat Acad Sci USA 2006, 103(11):4134-4139. PMID: 16537497
  文献评价指标  
  下载次数:139次 浏览次数:28次