期刊论文详细信息
BMC Genomics
Temperature during early development has long-term effects on microRNA expression in Atlantic cod
Igor Babiak3  Hilde Toften1  Velmurugu Puvanendran1  Steinar D Johansen2  Teshome Tilahun Bizuayehu3 
[1] Nofima AS, Muninbakken 9-13, Tromsø, 9291, NO, Norway;Arctic University of Norway, FHS, RNA Lab, Dept Med Biol, Tromsø, N-9037, Norway;University of Nordland, Faculty of Biosciences and Aquaculture, Bodø, 8049, Norway
关键词: Thermal plasticity;    miRNA;    Methylation;    Embryonic development;    Atlantic cod;   
Others  :  1173970
DOI  :  10.1186/s12864-015-1503-7
 received in 2015-03-06, accepted in 2015-03-27,  发布年份 2015
PDF
【 摘 要 】

Background

Environmental temperature has serious implications in life cycle of aquatic ectotherms. Understanding the molecular mechanisms of temperature acclimation and adaptation of marine organisms is of the uttermost importance for ecology, fisheries, and aquaculture, as it allows modeling the effects of global warming on population dynamics. Regulatory molecules are major modulators of acclimation and adaptation; among them, microRNAs (miRNAs) are versatile and substantial contributors to regulatory networks of development and adaptive plasticity. However, their role in thermal plasticity is poorly known. We have asked whether the temperature and its shift during the early ontogeny (embryonic and larval development) affect the miRNA repertoire of Atlantic cod (Gadus morhua), and if thermal experience has long-term consequences in the miRNA profile.

Results

We characterized miRNA during different developmental stages and in juvenile tissues using next generation sequencing. We identified 389 putative miRNA precursor loci, 120 novel precursor miRNAs, and 281 mature miRNAs. Some miRNAs showed stage- or tissue-enriched expression and miRNAs, such as the miR-17 ~ 92 cluster, myomiRs (miR-206), neuromiRs (miR-9, miR-124), miR-130b, and miR-430 showed differential expression in different temperature regimes. Long-term effect of embryonic incubation temperature was revealed on expression of some miRNAs in juvenile pituitary (miR-449), gonad (miR-27c, miR-30c, and miR-200a), and liver (let-7 h, miR-7a, miR-22, miR-34c, miR-132a, miR-192, miR-221, miR-451, miR-2188, and miR-7550), but not in brain. Some of differentially expressed miRNAs in the liver were confirmed using LNA-based rt-qPCR. The effect of temperature on methylation status of selected miRNA promoter regions was mostly inconclusive.

Conclusions

Temperature elevation by several degrees during embryonic and larval developmental stages significantly alters the miRNA profile, both short-term and long-term. Our results suggest that a further rise in seas temperature might affect life history of Atlantic cod.

【 授权许可】

   
2015 Bizuayehu et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150423025254347.pdf 1573KB PDF download
Figure 6. 38KB Image download
Figure 5. 16KB Image download
Figure 4. 47KB Image download
Figure 3. 86KB Image download
Figure 2. 37KB Image download
Figure 1. 33KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In. Edited by Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM. Cambridge University Press, Cambridge, U. K. 2013
  • [2]Drinkwater KF: The response of Atlantic cod (Gadus morhua) to future climate change. ICES J Marine Sci 2005, 62(7):1327-1337.
  • [3]Hollowed AB, Barange M, Beamish RJ, Brander K, Cochrane K, Drinkwater K, Foreman MGG, Hare JA, Holt J, Ito SI, et al.: Projected impacts of climate change on marine fish and fisheries. ICES J Marine Sci 2013, 70(5):1023-1037.
  • [4]Petitgas P, Rijnsdorp AD, Dickey-Collas M, Engelhard GH, Peck MA, Pinnegar JK, Drinkwater K, Huret M, Nash RDM: Impacts of climate change on the complex life cycles of fish. Fish Oceanogr 2013, 22(2):121-139.
  • [5]Pörtner HO, Berdal B, Blust R, Brix O, Colosimo A, De Wachter B, Giuliani A, Johansen T, Fischer T, Knust R, et al.: Climate induced temperature effects on growth performance, fecundity and recruitment in marine fish: developing a hypothesis for cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpout (Zoarces viviparus). Cont Shelf Res 2001, 21(18–19):1975-1997.
  • [6]Stenevik EK, Sundby S: Impacts of climate change on commercial fish stocks in Norwegian waters. Mar Policy 2007, 31(1):19-31.
  • [7]Stensholt BK: Cod migration patterns in relation to temperature: analysis of storage tag data. ICES J Marine Sci 2001, 58(4):770-793.
  • [8]Perry AL, Low PJ, Ellis JR, Reynolds JD: Climate change and distribution shifts in marine fishes. Science 2005, 308(5730):1912-1915.
  • [9]Pepin P, Orr DC, Anderson JT: Time to hatch and larval size in relation to temperature and egg size in Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 1997, 54(S1):2-10.
  • [10]Pörtner HO, Farrell AP: Physiology and climate change. Science 2008, 322(5902):690-692.
  • [11]O'Brien CM, Fox CJ, Planque B, Casey J: Fisheries: Climate variability and North Sea cod. Nature 2000, 404(6774):142.
  • [12]Le Bris A, Fréchet A, Galbraith PS, Wroblewski JS: Evidence for alternative migratory behaviours in the northern Gulf of St Lawrence population of Atlantic cod (Gadus morhua L.). ICES J Marine Sci 2013, 70(4):793-804.
  • [13]Tattersall GJ, Sinclair BJ, Withers PC, Fields PA, Seebacher F, Cooper CE, Maloney SK: Coping with thermal challenges: Physiological adaptations to environmental temperatures. Comprehensive Physiol 2012, 2:2151-2202.
  • [14]Somero GN: The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol 2010, 213(6):912-920.
  • [15]Pasquinelli AE: MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 2012, 13(4):271-282.
  • [16]Bizuayehu TT, Babiak I: MicroRNA in Teleost Fish. Genome Biol Evol 2014, 6(8):1911-1937.
  • [17]Garcia De La Serrana D, Vieira VLA, Andree KB, Darias M, Estévez A, Gisbert E, Johnston IA: Development Temperature Has Persistent Effects on Muscle Growth Responses in Gilthead Sea Bream. PLoS One 2012, 7(12):e51884.
  • [18]Johnston IA, Lee HT, Macqueen DJ, Paranthaman K, Kawashima C, Anwar A, Kinghorn JR, Dalmay T: Embryonic temperature affects muscle fibre recruitment in adult zebrafish: genome-wide changes in gene and microRNA expression associated with the transition from hyperplastic to hypertrophic growth phenotypes. J Exp Biol 2009, 212(12):1781-1793.
  • [19]Scott GR, Johnston IA: Temperature during embryonic development has persistent effects on thermal acclimation capacity in zebrafish. Proc Natl Acad Sci 2012, 109(35):14247-14252.
  • [20]Jonsson B, Jonsson N: Early environment influences later performance in fishes. J Fish Biol 2014, 85(2):151-188.
  • [21]Campos C, Sundaram AYM, Valente LMP, Conceicao LEC, Engrola S, Fernandes JMO: Thermal plasticity of the miRNA transcriptome during Senegalese sole development. BMC Genomics 2014, 15:525. BioMed Central Full Text
  • [22]Yang R, Dai Z, Chen S, Chen L: MicroRNA-mediated gene regulation plays a minor role in the transcriptomic plasticity of cold-acclimated zebrafish brain tissue. BMC Genomics 2011, 12(1):605. BioMed Central Full Text
  • [23]Johansen SD, Karlsen BO, Furmanek T, Andreassen M, Jorgensen TE, Bizuayehu TT, Breines R, Emblem A, Kettunen P, Luukko K, et al.: RNA deep sequencing of the Atlantic cod transcriptome. Comp Biochem Physiol D Genomics Proteomics 2011, 6(1):18-22.
  • [24]Star B, Nederbragt AJ, Jentoft S, Grimholt U, Malmstrom M, Gregers TF, Rounge TB, Paulsen J, Solbakken MH, Sharma A, et al.: The genome sequence of Atlantic cod reveals a unique immune system. Nature 2011, 477(7363):207-210.
  • [25]Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noël B, Bento P, Da Silva C, Labadie K, Alberti A, et al.: The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun 2014, 5:3657.
  • [26]Bekaert M, Lowe NR, Bishop SC, Bron JE, Taggart JB, Houston RD: Sequencing and characterisation of an extensive Atlantic salmon (Salmo salar L.) microRNA repertoire. PLoS One 2013, 8(7):e70136.
  • [27]Bizuayehu T, Lanes C, Furmanek T, Karlsen B, Fernandes J, Johansen S, Babiak I: Differential expression patterns of conserved miRNAs and isomiRs during Atlantic halibut development. BMC Genomics 2012, 13(1):11. BioMed Central Full Text
  • [28]Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF: Zebrafish miR-430 promotes deadenylation and clearance of maternal mRNAs. Science 2006, 312(5770):75-79.
  • [29]Soni K, Choudhary A, Patowary A, Singh AR, Bhatia S, Sivasubbu S, Chandrasekaran S, Pillai B: MiR-34 is maternally inherited in Drosophila melanogaster and Danio rerio. Nucleic Acids Res 2013, 41(8):4470-4480.
  • [30]Tang F, Kaneda M, O’Carroll D, Hajkova P, Barton SC, Sun YA, Lee C, Tarakhovsky A, Lao K, Surani MA: Maternal microRNAs are essential for mouse zygotic development. Genes Dev 2007, 21(6):644-648.
  • [31]Ma H, Hostuttler M, Wei H, Rexroad CE III, Yao J: Characterization of the rainbow trout egg microRNA transcriptome. PLoS One 2012, 7(6):e39649.
  • [32]Yoo J, Jung H, Kim C-H, Son W, Kim J: miR-7641 modulates the expression of CXCL1 during endothelial differentiation derived from human embryonic stem cells. Arch Pharmacal Res 2013, 36(3):353-358.
  • [33]Lee MT, Bonneau AR, Takacs CM, Bazzini AA, DiVito KR, Fleming ES, Giraldez AJ: Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature 2013, 503(7476):360-364.
  • [34]Tiago DM, Marques CL, Roberto VP, Cancela ML, Laizé V: Mir-20a regulates in vitro mineralization and BMP signaling pathway by targeting BMP-2 transcript in fish. Arch Biochem Biophys 2014, 543:23-30.
  • [35]Nicoli S, Knyphausen C-P, Zhu Lihua J, Lakshmanan A, Lawson Nathan D: miR-221 is required for endothelial tip cell behaviors during vascular development. Dev Cell 2012, 22(2):418-429.
  • [36]Biyashev D, Veliceasa D, Topczewski J, Topczewska JM, Mizgirev I, Vinokour E, Reddi AL, Licht JD, Revskoy SY, Volpert OV: miR-27b controls venous specification and tip cell fate. Blood 2012, 119(11):2679-2687.
  • [37]Concepcion CP, Bonetti C, Ventura A: The microRNA-17-92 family of microRNA clusters in development and disease. Cancer J 2012, 18(3):262-267.
  • [38]Soares A, Pereira P, Santos B, Egas C, Gomes A, Arrais J, Oliveira J, Moura G, Santos M: Parallel DNA pyrosequencing unveils new zebrafish microRNAs. BMC Genomics 2009, 10(1):195. BioMed Central Full Text
  • [39]Le MTN, Shyh-Chang N, Khaw SL, Chin LZ, Teh C, Tay J, O'Day E, Korzh V, Yang H, Lal A, et al.: Conserved regulation of p53 network dosage by microRNA-125b occurs through evolving miRNA-target gene pairs. PLoS Genet 2011, 7(9):e1002242.
  • [40]Le MTN, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V, Lodish HF, Lim B: MicroRNA-125b is a novel negative regulator of p53. Genes Dev 2009, 23(7):862-876.
  • [41]Dunworth WP, Cardona-Costa J, Cagavi E, Kim J-d, Fischer JC, Meadows S, Wang Y, Cleaver O, Qyang Y, Ober EA, et al.: Bone morphogenetic protein 2 signaling negatively modulates lymphatic development in vertebrate embryos. Circul Res 2013, 114(1):56-66.
  • [42]Bhushan R, Grünhagen J, Becker J, Robinson PN, Ott C-E, Knaus P: miR-181a promotes osteoblastic differentiation through repression of TGF-β signaling molecules. Int J Biochem Cell Biol 2013, 45(3):696-705.
  • [43]Li Q-J, Chau J, Ebert PJR, Sylvester G, Min H, Liu G, Braich R, Manoharan M, Soutschek J, Skare P, et al.: miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 2007, 129(1):147-161.
  • [44]Kapsimali M, Kloosterman WP, de Bruijn E, Rosa F, Plasterk RHA, Wilson SW: MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol 2007, 8(8):R173. BioMed Central Full Text
  • [45]Smirnova L, Grafe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG: Regulation of miRNA expression during neural cell specification. Eur J Neurosci 2005, 21(6):1469-1477.
  • [46]Yu J-Y, Chung K-H, Deo M, Thompson RC, Turner DL: MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res 2008, 314(14):2618-2633.
  • [47]Visvanathan J, Lee S, Lee B, Lee JW, Lee S-K: The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 2007, 21(7):744-749.
  • [48]Zhang N, Lin JK, Chen J, Liu XF, Liu JL, Luo HS, Li YQ, Cui S: MicroRNA 375 Mediates the Signaling Pathway of Corticotropin-releasing Factor (CRF) Regulating Pro-opiomelanocortin (POMC) Expression by Targeting Mitogen-activated Protein Kinase 8. J Biol Chem 2013, 288(15):10361-10373.
  • [49]Bizuayehu TT, Babiak J, Norberg B, Fernandes JMO, Johansen SD, Babiak I: Sex-Biased miRNA Expression in Atlantic Halibut (Hippoglossus hippoglossus) Brain and Gonads. Sex Dev 2012, 6(5):257-266.
  • [50]Hall T, Johnston I: Temperature and developmental plasticity during embryogenesis in the Atlantic cod Gadus morhua L. Mar Biol 2003, 142(5):833-840.
  • [51]Yeung ML, Yasunaga J-i, Bennasser Y, Dusetti N, Harris D, Ahmad N, Matsuoka M, Jeang K-T: Roles for microRNAs, miR-93 and miR-130b, and tumor protein 53–induced nuclear protein 1 tumor suppressor in cell growth dysregulation by human T-cell lymphotrophic virus 1. Cancer Res 2008, 68(21):8976-8985.
  • [52]Choi W-Y, Giraldez AJ, Schier AF: Target protectors reveal dampening and balancing of nodal agonist and antagonist by miR-430. Science 2007, 318(5848):271-274.
  • [53]Shen MM: Nodal signaling: developmental roles and regulation. Development 2007, 134(6):1023-1034.
  • [54]Skjærven KH, Olsvik PA, Finn RN, Holen E, Hamre K: Ontogenetic expression of maternal and zygotic genes in Atlantic cod embryos under ambient and thermally stressed conditions. Comparative Biochem Physiol A 2011, 159(2):196-205.
  • [55]Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, Hammond SM, Bartel DP, Schier AF: MicroRNAs regulate brain morphogenesis in zebrafish. Science 2005, 308(5723):833-838.
  • [56]Rathjen T, Pais H, Sweetman D, Moulton V, Munsterberg A, Dalmay T: High throughput sequencing of microRNAs in chicken somites. FEBS Lett 2009, 583(9):1422-1426.
  • [57]Goljanek-Whysall K, Sweetman D, Abu-Elmagd M, Chapnik E, Dalmay T, Hornstein E, Münsterberg A: MicroRNA regulation of the paired-box transcription factor Pax3 confers robustness to developmental timing of myogenesis. Proc Natl Acad Sci U S A 2011, 108(29):11936-11941.
  • [58]Liu X, Ma Y, Zhang C, Wei S, Cao Y, Wang Q: Nodal promotes mir-206 expression to control convergence and extension movements during zebrafish gastrulation. J Genet Genomics 2013, 40(10):515-521.
  • [59]Hall TE, Cole NJ, Johnston IA: Temperature and the expression of seven muscle-specific protein genes during embryogenesis in the Atlantic cod Gadus morhua L. J Exp Biol 2003, 206(18):3187-3200.
  • [60]Liu X, Ning G, Meng A, Wang Q: MicroRNA-206 regulates cell movements during zebrafish gastrulation by targeting prickle1a and regulating c-Jun N-terminal kinase 2 phosphorylation. Mol Cell Biol 2012, 32(14):2934-2942.
  • [61]Fitzsimmons SD, Perutz M: Effects of egg incubation temperature on survival, prevalence and types of malformations in vertebral column of Atlantic cod (Gadus morhua) larvae. Bull Eur Assoc Fish Pathol 2006, 26(2):80-86.
  • [62]Franzosa JA, Bugel SM, Tal TL, La Du JK, Tilton SC, Waters KM, Tanguay RL: Retinoic acid-dependent regulation of miR-19 expression elicits vertebrate axis defects. FASEB J 2013, 27(12):4866-4876.
  • [63]Li X, Cassidy JJ, Reinke CA, Fischboeck S, Carthew RW: A microRNA imparts robustness against environmental fluctuation during development. Cell 2009, 137(2):273-282.
  • [64]Johnston IA, Bower NI, Macqueen DJ: Growth and the regulation of myotomal muscle mass in teleost fish. J Exp Biol 2011, 214(Pt 10):1617-1628.
  • [65]Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel AE, Kel OV, Ignatieva EV, Ananko EA, Podkolodnaya OA, Kolpakov FA, et al.: Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res 1998, 26(1):362-367.
  • [66]Xia JH, He XP, Bai ZY, Yue GH: Identification and Characterization of 63 MicroRNAs in the Asian Seabass Lates calcarifer. PLoS One 2011, 6(3):11.
  • [67]Wu TH, Pan CY, Lin MC, Hsieh JC, Hui CF, Chen JY: In vivo screening of zebrafish microRNA responses to bacterial infection and their possible roles in regulating immune response genes after lipopolysaccharide stimulation. Fish Physiol Biochem 2012, 38(5):1299-1310.
  • [68]Perez-Casanova JC, Rise ML, Dixon B, Afonso LO, Hall JR, Johnson SC, Gamperl AK: The immune and stress responses of Atlantic cod to long-term increases in water temperature. Fish Shellfish Immunol 2008, 24(5):600-609.
  • [69]Koturbash I, Melnyk S, James SJ, Beland FA, Pogribny IP: Role of epigenetic and miR-22 and miR-29b alterations in the downregulation of Mat1a and Mthfr genes in early preneoplastic livers in rats induced by 2-acetylaminofluorene. Mol Carcinog 2013, 52(4):318-327.
  • [70]Pase L, Layton JE, Kloosterman WP, Carradice D, Waterhouse PM, Lieschke GJ: miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2. Blood 2009, 113(8):1794-1804.
  • [71]Soares AR, Reverendo M, Pereira PM, Nivelles O, Pendeville H, Bezerra AR, Moura GR, Struman I, Santos MAS: Dre-miR-2188 targets Nrp2a and mediates proper intersegmental vessel development in zebrafish embryos. PLoS One 2012, 7(6):e39417.
  • [72]Nemoto T, Mano A, Shibasaki T: miR-449a contributes to glucocorticoid-induced CRF-R1 downregulation in the pituitary during stress. Mol Endocrinol 2013, 27(10):1593-1602.
  • [73]Finstad AG, Jonsson B: Effect of incubation temperature on growth performance in Atlantic salmon. Mar Ecol Prog Ser 2012, 454:75-82.
  • [74]Puvanendran V, Falk-Petersen I-B, Lysne H, Tveiten H, Toften H, Peruzzi S. Effects of different step-wise temperature increment regimes during egg incubation of Atlantic cod (Gadus morhua L.) on egg viability and newly hatched larval quality. Aquacult Res 2013:doi: 10.1111/are.12173.
  • [75]Herbing IHV, Miyake T, Hall BK, Boutilier RG: Ontogeny of feeding and respiration in larval Atlantic cod Gadus morhua (Teleostei, Gadiformes): I Morphology. J Morphol 1996, 227(1):15-35.
  • [76]Haugen T, Almeida F, Andersson E, Bogerd J, Male R, Skaar K, Schulz R, Sorhus E, Wijgerde T, Taranger G: Sex differentiation in Atlantic cod (Gadus morhua L.): morphological and gene expression studies. Reprod Biol Endocrinol 2012, 10(1):47. BioMed Central Full Text
  • [77]Martin M: Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011, 17(1):10-12.
  • [78]Langmead B, Trapnell C, Pop M, Salzberg S: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10(3):R25. BioMed Central Full Text
  • [79]Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N: miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 2012, 40(1):37-52.
  • [80]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11(10):R106. BioMed Central Full Text
  • [81]Dillies M-A, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, Keime C, Marot G, Castel D, Estelle J, et al.: A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform 2012, 14(6):671-683.
  • [82]Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A: Differential expression in RNA-seq: A matter of depth. Genome Res 2011, 21(12):2213-2223.
  文献评价指标  
  下载次数:41次 浏览次数:5次