BMC Research Notes | |
Microsatellite markers for Urochloa humidicola (Poaceae) and their transferability to other Urochloa species | |
Anete P Souza3  Bianca BZ Vigna1  Fernanda A Oliveira2  Mariana A Barreto2  Jean CS Santos2  | |
[1] EMBRAPA Southeast Livestock, Brazilian Agricultural Research Corporation, CP 339, São Carlos CEP 13560-970, SP, Brazil;Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, CP 6010, Campinas, CEP 13083-875, SP, Brazil;Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, CP 6109, Campinas, CEP 13083-862, SP, Brazil | |
关键词: Grass; Forage; SSR transferability; Genomic library; Microsatellite; | |
Others : 1138244 DOI : 10.1186/s13104-015-1044-9 |
|
received in 2014-08-18, accepted in 2015-03-03, 发布年份 2015 | |
【 摘 要 】
Background
Urochloa humidicola is a warm-season grass commonly used as forage in the tropics and is recognized for its tolerance to seasonal flooding. This grass is an important forage species for the Cerrado and Amazon regions of Brazil. U. humidicola is a polyploid species with variable ploidy (6X–9X) and facultative apomixis with high phenotypic plasticity. However, this apomixis and ploidy, as well as the limited knowledge of the genetic basis of the germplasm collection, have constrained genetic breeding activities, yet microsatellite markers may enable a better understanding of the species’ genetic composition. This study aimed to develop and characterize new polymorphic microsatellite molecular markers in U. humidicola and to evaluate their transferability to other Urochloa species.
Findings
A set of microsatellite markers for U. humidicola was identified from two new enriched genomic DNA libraries: the first library was constructed from a single sexual genotype and the second from a pool of eight apomictic genotypes selected on the basis of previous results. Of the 114 loci developed, 72 primer pairs presented a good amplification product, and 64 were polymorphic among the 34 genotypes tested. The number of bands per simple sequence repeat (SSR) locus ranged from 1 to 29, with a mean of 9.6 bands per locus. The mean polymorphism information content (PIC) of all loci was 0.77, and the mean discrimination power (DP) was 0.87. STRUCTURE analysis revealed differences among U. humidicola accessions, hybrids, and other Urochloa accessions. The transferability of these microsatellites was evaluated in four species of the genus, U. brizantha, U. decumbens, U. ruziziensis, and U. dictyoneura, and the percentage of transferability ranged from 58.33% to 69.44% depending on the species.
Conclusions
This work reports new polymorphic microsatellite markers for U. humidicola that can be used for breeding programs of this and other Urochloa species, including genetic linkage mapping, quantitative trait loci identification, and marker-assisted selection.
【 授权许可】
2015 Santos et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150319020951208.pdf | 978KB | download | |
Figure 1. | 157KB | Image | download |
【 图 表 】
Figure 1.
【 参考文献 】
- [1]Sendulsky T: Brachiaria: taxonomy of cultivated and native species in Brazil. Hoehnea 1978, 7:99-139.
- [2]Renvoize SA, Clayton WD, Kabuye CHS. Morphology, Taxonomy and Natural Distribution of Brachiaria (Trin.) Griseb. In: Miles JW, Maass BL, Valle CB, editors. Brachiaria: Biology, agronomy, and improvement. Embrapa/CIAT; 1996. p.1-15.
- [3]Adamowski EV, Boldrini KR, Pagliarini MS, Valle CB: Abnormal cytokinesis in microsporogenesis of Brachiaria humidicola (Poaceae: Paniceae). Genet Mol Res 2007, 6:616-21.
- [4]Boldrini KR, Pagliarini MS, do Valle CB: Meiotic behavior of a nonaploid accession endorses x = 6 for Brachiaria humidicola (Poaceae). Genet Mol Res 2009, 8:1444-50.
- [5]Boldrini KR, Micheletti PL, Gallo PH, Mendes-Bonato AB, Pagliarini MS, do Valle CB: Origin of a polyploid accession of Brachiaria humidicola (Poaceae: Panicoideae: Paniceae). Genet Mol Res 2009, 8:888-95.
- [6]Boldrini KR, Pagliarini MS, do Valle CB: Evidence of natural hybridization in Brachiaria humidicola (Rendle) Schweick. (Poaceae: Panicoideae: Paniceae). J Genet 2010, 89:91-4.
- [7]Jungmann L, Vigna BBZ, Boldrini KR, Sousa ACB, do Valle CB, Resende RMS, et al.: Genetic diversity and population structure analysis of the tropical pasture grass Brachiaria humidicola based on microsatellites, cytogenetics, morphological traits, and geographical origin. Genome 2010, 53:698-709.
- [8]Moreira LM, Martuscello JA, Fonseca DM, Mistura C, Morais RV, Júnior JIR. Perfilhamento, acúmulo de forragem e composição bromatológica do capim-braquiária adubado com nitrogênio. In: Revista Brasileira de Zootecnia.2009. p. 1675–1684. http://www.scielo.br/pdf/rbz/v38n9/06.pdf. Accessed: 02 April 2014.
- [9]Keller-Grein G, Maass BL, Hanson J. Natural variation in Brachiaria and existing germplasm collections. In: Miles JW, Maass BL, Valle CB, editors. Brachiaria: biology, agronomy and improvement. Embrapa/CIAT; 1996. p.16-42.
- [10]Rauscher G, Simko I: Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes. BMC Plant Biol 2013, 13:11. BioMed Central Full Text
- [11]Bhat PR, Krishnakumar V, Hendre PS, Rajendrakumar P, Varshney RK, Aggarwal RK: Identification and characterization of expressed sequence tags-derived simple sequence repeats markers from robusta coffee variety ‘CxR’ (an interspecific hybrid of Coffea canephora x Coffea acongensis). Mol Ecol Notes 2005, 5:80-3.
- [12]Jungmann L, Vigna BBZ, Paiva J, Sousa ACB, do Valle CB, Laborda PR, et al.: Development of microsatellite markers for Brachiaria humidicola (Rendle) Schweick. Conserv Genet Resour 2009, 01:475-9.
- [13]Vigna BBZ, Alleoni GC, Jungmann L, do Valle CB, Souza AP: New microsatellite markers developed from Urochloa humidicola (Poaceae) and cross amplification in different Urochloa species. BMC Res Notes 2011, 4:523. BioMed Central Full Text
- [14]Doyle JJ, Doyle JL: A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 1987, 19:11-5.
- [15]Billotte N, Lagoda PJR, Risterucci AM, Baurens FC: Microsatellite-enriched libraries: applied methodology for the development of SSR markers in tropical crops. Fruits 1999, 54:277-88.
- [16]Thiel T. MISA — MIcroSAtellite identification tool, Version 1.0. In: MISA — MIcroSAtellite identification tool. Leibniz Institute of Plant Genetics and Crop Plant Research. 2001. http://pgrc.ipk-gatersleben.de/misa/misa.html. Accessed 21 August 2012.
- [17]Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA: Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 2007, 35:W71-4.
- [18]Creste S, Tulmann Neto A, Figueira A: Detection of single sequence repeat polymorphisms in denature polyacrylamide sequencing gels by silver staining. Plant Mol Bio Rep 2001, 19:299-306.
- [19]Esselink GD, Nybom H, Vosman B: Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting—peak ratios) method. Theor Appl Genet 2004, 109:402-8.
- [20]Clark LV, Jasieniuk M: Polysat: an R package for polyploid microsatellite analysis. Mol Ecol Resour 2011, 11:562-6.
- [21]Mateescu RG, Zhang Z, Tsai K, Phavaphutanon J, Burton Wursten NI, Lust G, et al.: Analysis of allele fidelity, polymorphic information content, and density of microsatellites in a genome-wide screening for hip dysplasia in a crossbreed pedigree. J Hered 2005, 96:847-53.
- [22]Tessier C, David J, This P, Boursiquot JM, Charrier A: Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theor Appl Genet 1999, 98:171-7.
- [23]Pritchard J, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155:945-59.
- [24]Falush D, Stephens M, Pritchard JK: Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 2003, 164:1567-87.
- [25]Falush D, Stephens M, Pritchard JK: Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 2007, 7:574-8.
- [26]Evanno G, Regnaut S, Goudet J: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 2005, 14:2611-20.
- [27]Earl DA, von Holdt BM: STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 2012, 4:359-61.
- [28]Jakobsson M, Rosenberg NA: CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23:1801-6.
- [29]Rosenberg NA: DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 2004, 4:137-8.
- [30]Morgante M, Hanafey M, Powell W: Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 2002, 30:194-200.
- [31]Gonzalez AMT, Morton CM: Molecular and morphological phylogenetic analysis of Brachiaria and Urochloa (Poaceae). Mol Phylogenet Evol 2005, 37:36-44.