期刊论文详细信息
BMC Research Notes
TNA4OptFlux – a software tool for the analysis of strain optimization strategies
Miguel Rocha3  Isabel Rocha2  João Cardoso1  Rui Pereira2  José P Pinto3 
[1] SilicoLife, Lda., Avepark, Taipas, 4830, Portugal;IBB-Institute for Biotechnology and Bioengineering/Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal;Department of Informatics/CCTC, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
关键词: OptFlux;    Open-source software;    Topological analysis;    Metabolic networks;    Strain optimization;   
Others  :  1142809
DOI  :  10.1186/1756-0500-6-175
 received in 2013-01-07, accepted in 2013-04-19,  发布年份 2013
PDF
【 摘 要 】

Background

Rational approaches for Metabolic Engineering (ME) deal with the identification of modifications that improve the microbes’ production capabilities of target compounds. One of the major challenges created by strain optimization algorithms used in these ME problems is the interpretation of the changes that lead to a given overproduction. Often, a single gene knockout induces changes in the fluxes of several reactions, as compared with the wild-type, and it is therefore difficult to evaluate the physiological differences of the in silico mutant. This is aggravated by the fact that genome-scale models per se are difficult to visualize, given the high number of reactions and metabolites involved.

Findings

We introduce a software tool, the Topological Network Analysis for OptFlux (TNA4OptFlux), a plug-in which adds to the open-source ME platform OptFlux the capability of creating and performing topological analysis over metabolic networks. One of the tool’s major advantages is the possibility of using these tools in the analysis and comparison of simulated phenotypes, namely those coming from the results of strain optimization algorithms. We illustrate the capabilities of the tool by using it to aid the interpretation of two E. coli strains designed in OptFlux for the overproduction of succinate and glycine.

Conclusions

Besides adding new functionalities to the OptFlux software tool regarding topological analysis, TNA4OptFlux methods greatly facilitate the interpretation of non-intuitive ME strategies by automating the comparison between perturbed and non-perturbed metabolic networks. The plug-in is available on the web site http://www.optflux.org webcite, together with extensive documentation.

【 授权许可】

   
2013 Pinto et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328162127651.pdf 1795KB PDF download
Figure 7. 28KB Image download
Figure 6. 34KB Image download
Figure 5. 37KB Image download
Figure 4. 36KB Image download
Figure 3. 26KB Image download
Figure 2. 116KB Image download
Figure 1. 48KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Rocha I, Maia P, Evangelista P, Vilaça P, Soares S, Pinto JP, Nielsen J, Patil KR, Ferreira EC, Rocha M: OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol Jan. 2010, 4:45. BioMed Central Full Text
  • [2]Barabási AL, Oltvai ZN: Network biology: understanding the cell’s functional organization. Nat Rev Genet Feb. 2004, 5(2):101-113.
  • [3]Batagelj V, Mrvar A: Pajek - analysis and visualization of large networks. In Graph drawing software. Edited by Junger M, Mutzel P. Berlin: Springer; 2003:77-103.
  • [4]Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics (Oxford, England) 2011, 27(issue 3):431-432.
  • [5]Schuster S, Fell D, Dandekar T: A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol Mar. 2000, 18(3):326-332.
  • [6]Lee JM, Gianchandani EP, Papin JA: Flux balance analysis in the era of metabolomics. Brief Bioinform Jun. 2006, 7(2):140-150.
  • [7]Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, Polpitiya AD, Adkins JN, Schramm G, Purvine SO, Lopez-Ferrer D, Weitz KK, Eils R, König R, Smith RD, Palsson BØ: Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol Syst Biol 2010, 6:390.
  • [8]Helden J, Wernisch L, Gilbert D, Wodak SJ: Graph-based analysis of metabolic networks. Ernst Schering Res Found Workshop Jan. 2002, 38:245-274.
  • [9]Albert R, Barabási AL: Statistical mechanics of complex networks. Rev Mod Phys 2002, 74:47-97.
  • [10]Watts DJ, Strogatz SH: Collective dynamics of ‘small-world’ networks. Nature Jun. 1998, 393(6684):440-442.
  • [11]Mason O, Verwoerd M: Graph theory and networks in biology. IET Syst Biol 2007, 1:89-119.
  • [12]Henzinger M: Hyperlink analysis for the Web. IEEE Internet Comput 2001, 5:45-50.
  • [13]Chaouiya C: Petri net modelling of biological networks. Brief Bioinform Jul. 2007, 8(4):210-219.
  • [14]Gerlee P, Lizana L, Sneppen K: Pathway identification by network pruning in the metabolic network of Escherichia coli. Bioinformatics (Oxford, England) 2009, 25(24):3282-3288.
  • [15]Pinto JP, Rocha I, Rocha M: Highlighting Metabolic Strategies Using Network Analysis over Strain Optimization Results. Pattern Recognition in Bioinformatics Proceedings 2011.
  • [16]Rocha M, Maia P, Mendes R, Pinto JP, Ferreira EC, Nielsen J, Patil KR, Rocha I: Natural computation meta-heuristics for the in silico optimization of microbial strains. BMC Bioinformatics 2008, 9:499. BioMed Central Full Text
  • [17]Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BØ: A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 2007, 3:121.
  • [18]Riverola FF, Glez-Peña D, Reboiro-Jato M, Maia P, Rocha M, Díaz F: AIBench: a rapid application development framework for translational research in biomedicine. Comput Methods Programs Biomed 2001, 98(2):191-203.
  • [19]JUNG website http://jung.sourceforge.net/ webcite
  文献评价指标  
  下载次数:35次 浏览次数:25次