期刊论文详细信息
BMC Nephrology
Abnormal urinary excretion of NKCC2 and AQP2 in response to hypertonic saline in chronic kidney disease: an intervention study in patients with chronic kidney disease and healthy controls
Erling B Pedersen1  Robert A Fenton2  Jesper N Bech1  Anna-Ewa O Kulik1  Frank H Mose1  Janni M Jensen1 
[1] Regional Hospital Jutland West and Aarhus University, Aarhus, Denmark;Department of Biomedicine, Aarhus University, Aarhus, Denmark
关键词: Water;    Sodium;    ENaC;    AQP2;    NKCC2;    Chronic kidney disease;   
Others  :  1082663
DOI  :  10.1186/1471-2369-15-101
 received in 2014-02-27, accepted in 2014-06-11,  发布年份 2014
PDF
【 摘 要 】

Background

Renal handling of sodium and water is abnormal in chronic kidney disease (CKD). The aim of this study was to test the hypothesis that abnormal activity of the aquaporin-2 water channels (AQP2), the sodium-potassium-2chloride transporter (NKCC2) and/or the epithelial sodium channels (ENaC) contribute to this phenomenon.

Methods

23 patients with CKD and 24 healthy controls at baseline and after 3% saline infusion were compared. The following measurements were performed: urinary concentrations of AQP2 (u-AQP2), NKCC2 (u-NKCC2), ENaC (u-ENaCγ), glomerular filtration rate (GFR) estimated by 51Cr-EDTA clearance, free water clearance (CH2O), urinary output (UO), fractional excretion of sodium (FENa), plasma concentrations of AVP, renin (PRC), Angiotensin II (ANG II), Aldosterone (Aldo) and body fluid volumes.

Results

At baseline, GFR was 34 ml/min in CKD patients and 89 ml/ml in controls. There were no significant differences in u-AQP2, u-NKCC2 or u-ENaCγ, but FENa, p-Aldo and p-AVP were higher in CKD patients than controls. In response to hypertonic saline, patients with CKD had an attenuated decrease in CH2O and UO. A greater increase in U-AQP2 was observed in CKD patients compared to controls. Furthermore, u-NKCC2 increased in CKD patients, whereas u-NKCC2 decreased in controls. Body fluid volumes did not significantly differ.

Conclusions

In response to hypertonic saline, u-NKCC2 increased, suggesting an increased sodium reabsorption via NKCC2 in patients with CKD. U-AQP2 increased more in CKD patients, despite an attenuated decrease in CH2O. Thus, though high levels of p-AVP and p-Aldo, the kidneys can only partly compensate and counteract acute volume expansion due to a defective tubular response.

Trial registration

Clinical trial no: NCT01623661. Date of trial registration: 18.06.2012.

【 授权许可】

   
2014 Jensen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141224173838593.pdf 846KB PDF download
Figure 6. 40KB Image download
Figure 5. 69KB Image download
Figure 4. 44KB Image download
Figure 3. 48KB Image download
Figure 2. 47KB Image download
Figure 1. 57KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Hayslett JP, Kashgarian M, Epstein FH: Mechanism of change in the excretion of sodium per nephron when renal mass is reduced. J Clin Invest 1969, 48(6):1002-1006.
  • [2]Kwon TH, Frokiaer J, Fernandez-Llama P, Maunsbach AB, Knepper MA, Nielsen S: Altered expression of Na transporters NHE-3, NaPi-II, Na-K-ATPase, BSC-1, and TSC in CRF rat kidneys. Am J Physiol 1999, 277(2 Pt 2):F257-F270.
  • [3]Tannen RL, Regal EM, Dunn MJ, Schrier RW: Vasopressin-resistant hyposthenuria in advanced chronic renal disease. N Engl J Med 1969, 280(21):1135-1141.
  • [4]Michimata M, Kazama I, Mizukami K, Araki T, Nakamura Y, Suzuki M, Wang W, Fujimori K, Satomi S, Ito S, Imai Y, Matsubara M: Urinary concentration defect and limited expression of sodium cotransporter, rBSC1, in a rat model of chronic renal failure. Nephron Physiol 2003, 93(2):34-41.
  • [5]DiGiovanni SR, Nielsen S, Christensen EI, Knepper MA: Regulation of collecting duct water channel expression by vasopressin in Brattleboro rat. Proc Natl Acad Sci U S A 1994, 91(19):8984-8988.
  • [6]Kanno K, Sasaki S, Hirata Y, Ishikawa S, Fushimi K, Nakanishi S, Bichet DG, Marumo F: Urinary excretion of aquaporin-2 in patients with diabetes insipidus. N Engl J Med 1995, 332(23):1540-1545.
  • [7]Deen PM, van Aubel RA, van Lieburg AF, van Os CH: Urinary content of aquaporin 1 and 2 in nephrogenic diabetes insipidus. J Am Soc Nephrol 1996, 7(6):836-841.
  • [8]Nielsen S, Kwon TH, Frokiaer J, Agre P: Regulation and dysregulation of aquaporins in water balance disorders. J Intern Med 2007, 261(1):53-64.
  • [9]Pedersen EB, Thomsen IM, Lauridsen TG: Abnormal function of the vasopressin-cyclic-AMP-aquaporin2 axis during urine concentrating and diluting in patients with reduced renal function. A case control study. BMC Nephrol 2010, 11:26.
  • [10]Oh YS, Warnock DG: Disorders of the epithelial Na(+) channel in Liddle’s syndrome and autosomal recessive pseudohypoaldosteronism type 1. Exp Nephrol 2000, 8(6):320-325.
  • [11]Ecelbarger CA, Tiwari S: Sodium transporters in the distal nephron and disease implications. Curr Hypertens Rep 2006, 8(2):158-165.
  • [12]Ares GR, Caceres PS, Ortiz PA: Molecular regulation of NKCC2 in the thick ascending limb. Am J Physiol Renal Physiol 2011, 301(6):F1143-F1159.
  • [13]McKee JA, Kumar S, Ecelbarger CA, Fernandez-Llama P, Terris J, Knepper MA: Detection of Na(+) transporter proteins in urine. J Am Soc Nephrol 2000, 11(11):2128-2132.
  • [14]du Cheyron D, Daubin C, Poggioli J, Ramakers M, Houillier P, Charbonneau P, Paillard M: Urinary measurement of Na+/H + exchanger isoform 3 (NHE3) protein as new marker of tubule injury in critically ill patients with ARF. Am J Kidney Dis 2003, 42(3):497-506.
  • [15]Riazi S, Madala-Halagappa VK, Hu X, Ecelbarger CA: Sex and body-type interactions in the regulation of renal sodium transporter levels, urinary excretion, and activity in lean and obese Zucker rats. Gend Med 2006, 3(4):309-327.
  • [16]Pedersen EB, Eiskjaer H, Madsen B, Danielsen H, Egeblad M, Nielsen CB: Effect of captopril on renal extraction of renin, angiotensin II, atrial natriuretic peptide and vasopressin, and renal vein renin ratio in patients with arterial hypertension and unilateral renal artery disease. Nephrol Dial Transplant 1993, 8(10):1064-1070.
  • [17]Pedersen RS, Bentzen H, Bech JN, Pedersen EB: Effect of water deprivation and hypertonic saline infusion on urinary AQP2 excretion in healthy humans. Am J Physiol Renal Physiol 2001, 280(5):F860-F867.
  • [18]Graffe CC, Bech JN, Pedersen EB: Effect of high and low sodium intake on urinary aquaporin-2 excretion in healthy humans. Am J Physiol Renal Physiol 2012, 302(2):F264-F275.
  • [19]Lauridsen TG, Vase H, Starklint J, Bech JN, Pedersen EB: Protein-enriched diet increases water absorption via the aquaporin-2 water channels in healthy humans. Nephrol Dial Transplant 2010, 25(8):2502-2510.
  • [20]Matthesen SK, Larsen T, Vase H, Lauridsen TG, Jensen JM, Pedersen EB: Effect of amiloride and spironolactone on renal tubular function and central blood pressure in patients with arterial hypertension during baseline conditions and after furosemide: a double-blinded, randomized, placebo-controlled crossover trial. Clin Exp Hypertens 2013, 35(5):313-324.
  • [21]Hager H, Kwon TH, Vinnikova AK, Masilamani S, Brooks HL, Frokiaer J, Knepper MA, Nielsen S: Immunocytochemical and immunoelectron microscopic localization of alpha-, beta-, and gamma-ENaC in rat kidney. Am J Physiol Renal Physiol 2001, 280(6):F1093-F1106.
  • [22]Pedersen RS, Bentzen H, Bech JN, Nyvad O, Pedersen EB: Urinary aquaporin-2 in healthy humans and patients with liver cirrhosis and chronic heart failure during baseline conditions and after acute water load. Kidney Int 2003, 63(4):1417-1425.
  • [23]Graffe CC, Bech JN, Lauridsen TG, Vase H, Pedersen EB: Abnormal increase in urinary aquaporin-2 excretion in response to hypertonic saline in essential hypertension. BMC Nephrol 2012, 13:15.
  • [24]Graffe CC, Bech JN, Lauridsen TG, Pedersen EB: Urinary excretion of AQP2 and ENaC in autosomal dominant polycystic kidney disease during basal conditions and after a hypertonic saline infusion. Am J Physiol Renal Physiol 2012, 302(8):F917-F927.
  • [25]Lauridsen TG, Vase H, Bech JN, Nielsen S, Pedersen EB: Direct effect of methylprednisolone on renal sodium and water transport via the principal cells in the kidney. Eur J Endocrinol 2010, 162(5):961-969.
  • [26]Pisitkun T, Shen RF, Knepper MA: Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 2004, 101(36):13368-13373.
  • [27]Wen H, Frokiaer J, Kwon TH, Nielsen S: Urinary excretion of aquaporin-2 in rat is mediated by a vasopressin-dependent apical pathway. J Am Soc Nephrol 1999, 10(7):1416-1429.
  • [28]van der Lubbe N, Jansen PM, Salih M, Fenton RA, van den Meiracker AH, Danser AH, Zietse R, Hoorn EJ: The phosphorylated sodium chloride cotransporter in urinary exosomes is superior to prostasin as a marker for aldosteronism. Hypertension 2012, 60(3):741-748.
  • [29]Isobe K, Mori T, Asano T, Kawaguchi H, Nonoyama S, Kumagai N, Kamada F, Morimoto T, Hayashi M, Sohara E, Rai T, Sasaki S, Uchida S: Development of enzyme-linked immunosorbent assays for urinary thiazide-sensitive Na-Cl cotransporter (NCC) measurement. Am J Physiol Renal Physiol 2013, 305(9):F1374.
  • [30]Butterworth MB, Edinger RS, Frizzell RA, Johnson JP: Regulation of the epithelial sodium channel by membrane trafficking. Am J Physiol Renal Physiol 2009, 296(1):F10-F24.
  • [31]Gimenez I, Forbush B: Short-term stimulation of the renal Na-K-Cl cotransporter (NKCC2) by vasopressin involves phosphorylation and membrane translocation of the protein. J Biol Chem 2003, 278(29):26946-26951.
  • [32]Sands JM, Layton HE: The physiology of urinary concentration: an update. Semin Nephrol 2009, 29(3):178-195.
  • [33]Knepper MA, Brooks HL: Regulation of the sodium transporters NHE3, NKCC2 and NCC in the kidney. Curr Opin Nephrol Hypertens 2001, 10(5):655-659.
  • [34]Kim GH, Ecelbarger CA, Mitchell C, Packer RK, Wade JB, Knepper MA: Vasopressin increases Na-K-2Cl cotransporter expression in thick ascending limb of Henle's loop. Am J Physiol 1999, 276(1 Pt 2):F96-F103.
  • [35]Rieg T, Tang T, Uchida S, Hammond HK, Fenton RA, Vallon V: Adenylyl cyclase 6 enhances NKCC2 expression and mediates vasopressin-induced phosphorylation of NKCC2 and NCC. Am J Pathol 2013, 182(1):96-106.
  • [36]Ortiz PA: cAMP increases surface expression of NKCC2 in rat thick ascending limbs: role of VAMP. Am J Physiol Renal Physiol 2006, 290(3):F608-F616.
  • [37]Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP: Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet 1996, 13(2):183-188.
  • [38]Jensen JM, Mose FH, Bech JN, Nielsen S, Pedersen EB: Effect of volume expansion with hypertonic- and isotonic saline and isotonic glucose on sodium and water transport in the principal cells in the kidney. BMC Nephrol 2013, 14(1):202.
  • [39]Nakamura T, Saito T, Kusaka I, Higashiyama M, Nagasaka S, Ishibashi S, Ishikawa SE: Decrease in urinary excretion of aquaporin-2 associated with impaired urinary concentrating ability in diabetic nephropathy. Nephron 2002, 92(2):445-448.
  • [40]Wilson DR, Sonnenberg H: Medullary collecting duct function in the remnant kidney before and after volume expansion. Kidney Int 1979, 15(5):487-501.
  • [41]Jawadi MH, Ho LS, Dipette D, Ross DL: Regulation of plasma arginine vasopressin in patients with chronic renal failure maintained on hemodialysis. Am J Nephrol 1986, 6(3):175-181.
  • [42]Bouby N, Bachmann S, Bichet D, Bankir L: Effect of water intake on the progression of chronic renal failure in the 5/6 nephrectomized rat. Am J Physiol 1990, 258(4 Pt 2):F973-F979.
  • [43]Ecelbarger CA, Nielsen S, Olson BR, Murase T, Baker EA, Knepper MA, Verbalis JG: Role of renal aquaporins in escape from vasopressin-induced antidiuresis in rat. J Clin Invest 1997, 99(8):1852-1863.
  • [44]Kwon TH, Frokiaer J, Knepper MA, Nielsen S: Reduced AQP1, -2, and -3 levels in kidneys of rats with CRF induced by surgical reduction in renal mass. Am J Physiol 1998, 275(5 Pt 2):F724-F741.
  • [45]Teitelbaum I, McGuinness S: Vasopressin resistance in chronic renal failure. Evidence for the role of decreased V2 receptor mRNA. J Clin Invest 1995, 96(1):378-385.
  • [46]Loffing J, Korbmacher C: Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch 2009, 458(1):111-135.
  • [47]Greene EL, Kren S, Hostetter TH: Role of aldosterone in the remnant kidney model in the rat. J Clin Invest 1996, 98(4):1063-1068.
  • [48]Berl T, Katz FH, Henrich WL, de Torrente A, Schrier RW: Role of aldosterone in the control of sodium excretion in patients with advanced chronic renal failure. Kidney Int 1978, 14(3):228-235.
  • [49]Hene RJ, Boer P, Koomans HA, Mees EJ: Plasma aldosterone concentrations in chronic renal disease. Kidney Int 1982, 21(1):98-101.
  • [50]Masilamani S, Kim GH, Mitchell C, Wade JB, Knepper MA: Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest 1999, 104(7):R19-R23.
  • [51]Moissl UM, Wabel P, Chamney PW, Bosaeus I, Levin NW, Bosy-Westphal A, Korth O, Muller MJ, Ellegard L, Malmros V, Kaitwatcharachai C, Kuhlmann MK, Zhu F, Fuller NJ: Body fluid volume determination via body composition spectroscopy in health and disease. Physiol Meas 2006, 27(9):921-933.
  • [52]Brennan BL, Yasumura S, Letteri JM, Cohn SH: Total body electrolyte composition and distribution of body water in uremia. Kidney Int 1980, 17(3):364-371.
  • [53]Verdalles U, de Vinuesa SG, Goicoechea M, Quiroga B, Reque J, Panizo N, Arroyo D, Luno J: Utility of bioimpedance spectroscopy (BIS) in the management of refractory hypertension in patients with chronic kidney disease (CKD). Nephrol Dial Transplant 2012, 27(Suppl 4):iv31-5.
  文献评价指标  
  下载次数:70次 浏览次数:45次