BMC Genomics | |
Comparative genomics and transcriptomics in ants provide new insights into the evolution and function of odorant binding and chemosensory proteins | |
Daniel JC Kronauer1  Peter R Oxley1  Sean K McKenzie1  | |
[1] Laboratory of Insect Social Evolution, The Rockefeller University, 1230 York Avenue, 10065 New York, NY, USA | |
关键词: Comparative genomics; CSP; OBP; Chemosensation; Formicidae; Sociogenomics; Chemical communication; | |
Others : 1141234 DOI : 10.1186/1471-2164-15-718 |
|
received in 2014-03-12, accepted in 2014-08-14, 发布年份 2014 |
【 摘 要 】
Background
The complex societies of ants and other social insects rely on sophisticated chemical communication. Two families of small soluble proteins, the odorant binding and chemosensory proteins (OBPs and CSPs), are believed to be important in insect chemosensation. To better understand the role of these proteins in ant olfaction, we examined their evolution and expression across the ants using phylogenetics and sex- and tissue-specific RNA-seq.
Results
We find that subsets of both OBPs and CSPs are expressed in the antennae, contradicting the previous hypothesis that CSPs have replaced OBPs in ant olfaction. Both protein families have several highly conserved clades with a single ortholog in all eusocial hymenopterans, as well as clades with more dynamic evolution and many taxon-specific radiations. The dynamically evolving OBPs and CSPs have been hypothesized to function in chemical communication. Intriguingly, we find that seven members of the conserved clades are expressed specifically in the antennae of the clonal raider ant Cerapachys biroi, whereas only one dynamically evolving CSP is antenna specific. The orthologs of the conserved, antenna-specific C. biroi genes are also expressed in antennae of the ants Camponotus floridanus and Harpegnathos saltator, indicating that antenna-specific expression of these OBPs and CSPs is conserved across ants. Most members of the dynamically evolving clades in both protein families are expressed primarily in non-chemosensory tissues and thus likely do not fulfill chemosensory functions.
Conclusions
Our results identify candidate OBPs and CSPs that are likely involved in conserved aspects of ant olfaction, and suggest that OBPs and CSPs may not rapidly evolve to recognize species-specific signals.
【 授权许可】
2014 McKenzie et al.; licensee BioMed Central Ltd.
Files | Size | Format | View |
---|---|---|---|
Figure 4. | 112KB | Image | download |
Figure 3. | 57KB | Image | download |
Figure 2. | 96KB | Image | download |
Figure 1. | 103KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]LeBoeuf AC, Benton R, Keller L: The molecular basis of social behavior: models, methods and advances. Curr Opin Neurobiol 2012, 23:3-10.
- [2]Libbrecht R, Oxley P, Kronauer DJC, Keller L: Ant genomics sheds light on the molecular regulation of social organization. Genome Biol 2013, 14:212.
- [3]Richard FJ, Hunt JH: Intracolony chemical communication in social insects. Insect Soc 2013, 60:275-291.
- [4]Zhou X, Slone JD, Rokas A, Berger SL, Liebig J, Ray A, Reinberg D, Zwiebel LJ: Phylogenetic and transcriptomic analysis of chemosensory receptors in a pair of divergent ant species reveals sex-specific signatures of odor coding. PLoS Genet 2012, 8:e1002930.
- [5]Pelosi P, Zhou JJ, Ban LP, Calvello M: Soluble proteins in insect chemical communication. Cell Mol Life Sci 2006, 63:1658-1676.
- [6]Leal WS: Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 2013, 58:373-391.
- [7]Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y: Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biol 2007, 5:e118.
- [8]Sengul MS, Tu Z: Expression analysis and knockdown of two antennal odorant-binding protein genes in Aedes aegypti. J Insect Sci 2010, 10:1-18.
- [9]Swarup S, Morozova TV, Sridhar S, Nokes M, Anholt RRH: Modulation of feeding behavior by odorant-binding proteins in Drosophila melanogaster. Chem Senses 2014, 39:125-132.
- [10]Swarup S, Williams TI, Anholt RRH: Functional dissection of Odorant binding protein genes in Drosophila melanogaster. Genes Brain Behav 2011, 10:648-657.
- [11]Nomura A, Kawasaki K, Kubo T, Natori S: Purification and localization of p10, a novel protein that increases in nymphal regenerating legs of Periplaneta americana (American cockroach). Int J Dev Biol 1992, 36:391-398.
- [12]Maleszka J, Forêt S, Saint R, Maleszka R: RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee (Apis mellifera). Dev Genes Evol 2007, 217:189-196.
- [13]Dani FR, Michelucci E, Francese S, Mastrobuoni G, Cappellozza S, La Marca G, Niccolini A, Felicioli A, Moneti G, Pelosi P: Odorant-binding proteins and chemosensory proteins in pheromone detection and release in the silkmoth Bombyx mori. Chem Senses 2011, 36:335-344.
- [14]Vieira FG, Rozas J: Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: Origin and evolutionary history of the chemosensory system. Genome Biol Evol 2011, 3:476-490.
- [15]Vieira FG, Sánchez-Gracia A, Rozas J: Comparative genomic analysis of the odorant-binding protein family in 12 Drosophila genomes: purifying selection and birth-and-death evolution. Genome Biol 2007, 8:R235.
- [16]Zhou JJ, Vieira FG, He XL, Smadja C, Liu R, Rozas J, Field LM: Genome annotation and comparative analyses of the odorant binding proteins and chemosensory proteins in the pea aphid Acyrthosiphon pisum. Insect Mol Biol 2010, 19:113-122.
- [17]Gotzek D, Robertson HM, Wurm Y, Shoemaker D: Odorant binding proteins of the red imported fire ant Solenopsis invicta: an example of the problems facing the analysis of widely divergent Proteins. PLoS One 2011, 6:e16289.
- [18]Kulmuni J, Wurm Y, Pamilo P: Comparative genomics of chemosensory protein genes reveals rapid evolution and positive selection in ant-specific duplicates. Heredity 2013, 110:538-547.
- [19]Manoharan M, Chong MNF, Vatinadapoul A, Frumence E, Sowdhamini R, Offmann B: Comparative genomics of odorant binding proteins in Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus. Genome Biol Evol 2013, 5:163-180.
- [20]Wiegmann BM, Trautwein MD, Kim JW, Cassel BK, Bertone MA, Winterton SL, Yeates DK: Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biol 2009, 24:7-34.
- [21]Ronquist F, Klopfstein S, Vilhelmsen L, Schulmeister S, Murray DL, Rasnitsyn AP: A total-evidence approach to dating with fossils applied to the early radiation of the Hymenoptera. Systematic Biol 2011, 61:973-999.
- [22]Regier JC, Shultz JW, Kamib RE: Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc R Soc B 2005, 272:395-401.
- [23]Han MV, Thomas GWC, Lugo-Martinez J, Hahn MW: Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol Biol Evol 2012, 30:1987-1997.
- [24]Sjöstrand J, Sennblad B, Arvestad L, Lagergren J: DLRS: gene tree evolution in light of a species tree. Bioinformatics 2012, 28:2994-2995.
- [25]Forêt S, Maleszka R: Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Res 2006, 16:1404-1413.
- [26]Yang Z: PAML 4: a program package for phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24:1586-1591.
- [27]Zhang J, Nielsen R, Yang Z: Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 2005, 12:2472-2479.
- [28]Kronauer DJC, Pierce NE, Keller L: Asexual reproduction in introduced and native populations of the ant Cerapachys biroi. Mol Ecol 2012, 21:5221-5235.
- [29]Calvello M, Brandazza A, Navarrini A, Dani FR, Turillazzi S, Felicioli A, Pelosi P: Expression of odorant-binding proteins and chemosensory proteins in some Hymenoptera. Insect Biochem Mol Biol 2005, 35:297-307.
- [30]Krieger MJB, Ross KG: Identification of a major gene regulating complex social behavior. Science 2002, 11:328-332.
- [31]Leal WS, Ishida Y: Gp-9 s are ubiquitous proteins unlikely involved in olfactory mediation of social organization in the red imported fire ant Solenopsis invicta. PLoS One 2008, 3:e3762.
- [32]Ishida Y, Chiang V, Leal WS: Protein that makes sense in the Argentine ant. Naturwissenschaften 2002, 89:505-507.
- [33]Ozaki M, Wada-Katsumata A, Fujikawa K, Iwasaki M, Yokohari F, Satoji Y, Nisimura T, Yamaoka R: Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 2005, 309:311-314.
- [34]Galindo K, Smith DP: A large family of divergent Drosophila odorant-binding proteins expressed in gustatory and olfactory sensilla. Genetics 2001, 159:1059-1072.
- [35]Gonzalez D, Zhao Q, McMahan C, Velasquez D, Haskins WE, Sponsel V, Cassil A, Renthal R: The major antennal chemosensory protein of red imported fire ant workers. Insect Mol Biol 2009, 18:395-404.
- [36]Forêt S, Wanner KW, Maleszka R: Chemosensory proteins in the honey bee: insights from the annotated genome comparative analyses and expressional profiling. Insect Biochem Mol Biol 2007, 37:19-28.
- [37]Robertson HM, Wanner KW: The chemoreceptor superfamily in the honey bee Apis mellifera: expansion of the odorant but not gustatory receptor family. Genome Res 2006, 16:1395-1403.
- [38]Guo S, Kim J: Molecular evolution of Drosophila odorant receptor genes. Mol Biol Evol 2007, 24:1198-1207.
- [39]Smith CR, Smith CD, Robertson HM, Helmkampf M, Zimin A, Yandell M, Holt C, Hu H, Abouheif E, Benton R, Cash E, Croset V, Currie CR, Elhaik E, Elsik CG, Favé MJ, Fernandes V, Gibson JD, Graur D, Gronenberg W, Grubbs KJ, Hagen DE, Viniegra AS, Johnson BR, Johnson RM, Khila A, Kim JW, Mathis KA, Munoz-Torres MC, Murphy MC, et al.: Draft genome of the red harvester ant Pogonomyrmex barbatus. PNAS 2011, 108:5667-5672.
- [40]Smith CD, Zimin A, Holt C, Abouheif E, Benton R, Cash E, Croset V, Currie CR, Elhaik E, Elsik CG, Fave MJ, Fernandes V, Gadau J, Gibson JD, Graur D, Grubbs KJ, Hagen DE, Helmkampf M, Holley JA, Hu H, Viniegra AS, Johnson BR, Johnson RM, Khila A, Kim JW, Laird J, Mathis KA, Moeller JA, Muñoz-Torres MC, Murphy MC, et al.: Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile). PNAS 2011, 108:5673-5678.
- [41]Oxley P, Lu J, Fetter-Pruneda I, McKenzie SK, Li C, Hu H, Zhang G, Kronauer DJC: The genome of the clonal raider ant (Cerapachys biroi), a new model system for social evolution and behavior. Current Biol 2014, 24:451-458.
- [42]Engsontia P, Sanderson AP, Cobb M, Walden KKO, Robertson HM, Brown S: The red flour beetles large nose: an expanded odorant receptor gene family in Tribolium castaneum. Insect Biochem Mol Biol 2008, 38:387-397.
- [43]Rogers SM, Newland PL: The neurobiology of taste in insects. Adv Insect Phys 2003, 31:141-204.
- [44]de Brito Sanchez MG, Chen C, Li J, Liu F, Gauthier M, Giurfa M: Behavioral studies on tarsal gustation in honeybees: sucrose responsiveness and sucrose-mediated olfactory conditioning. J Comp Pysiol A 2008, 194:861-869.
- [45]de Brito Sanchez MG, Lorenzo E, Su S, Liu F, Zhan Y, Giurfa M: The tarsal taste of honey bees: behavioral and electrophysiological analyses. Fron Behav Neurosci 2014, 8:25.
- [46]Park SK, Shanbhag SR, Wang Q, Hasan G, Steinbrecht RA, Pikielny CW: Expression patterns of two putative odorant-binding proteins in the olfactory organs of Drosophila melanogaster have different implications for their functions. Cell Tissue Res 2000, 300:181-192.
- [47]Symonds MRE, Elgar MA: The evolution of pheromone diversity. Trends Ecol Evol 2008, 23:220-228.
- [48]Calvello M, Guerra N, Brandazza A, D’Ambrosio C, Scaloni A, Dani FR, Turillazzi S, Pelosi P: Soluble proteins of chemical communication in the social wasp Polistes dominulus. Cell Mol Life Sci 2003, 60:1933-1943.
- [49]Chintapalli VR, Wang J, Dow JAT: Using FlyAtlas to identify better Drosophila models of human disease. Nat Genet 2007, 39:715-720.
- [50]Anholt RRH, Williams TI: The soluble proteome of the Drosophila antenna. Chem Senses 2010, 35:21-30.
- [51]Kulmuni J, Havukainen H: Insights into the evolution of the CSP gene family through the integration of evolutionary analysis and comparative protein modeling. PLoS One 2013, 8:e63688.
- [52]Gomez-Diaz C, Reina JH, Cambillau C, Benton R: Ligands for pheromone-sensing neurons are not conformationally activated odorant binding proteins. PLoS Biol 2013, 11:e1001546.
- [53]Maida R, Ziegelberger G, Kaissling KE: Ligand binding to six recombinant pheromone-binding proteins of Anteraea polyphemus and Anteraea pernyi. J Com Physiol B 2003, 173:565-573.
- [54]Zhou JJ, Robertson G, He X, Dufour S, Hooper AM, Pickett JA, Keep NH, Field LM: Characterisation of Bombyx mori odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components. J Mol Biol 2009, 389:529-549.
- [55]Campanacci V, Lartique A, Hallberg BM, Jones TA, Giudici-Orticoni M-T, Tegoni M, Cambillau C: Moth chemosensory protein exhibits drastic conformational changes and cooperativity on ligand binding. PNAS 2003, 100:5069-5074.
- [56]Zhou JJ, Zhang GA, Huang W, Birkett MA, Field LM, Pickett JA, Pelosi P: Revisiting the odorant-binding protein LUSH of Drosophila melanogaster: evidence for odour recognition and discrimination. FEBS Lett 2004, 558:23-26.
- [57]Laughlin JD, Soo Ha T, Jones DNM, Smith DP: Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell 2008, 133:255-1265.
- [58]Campanacci V, Krieger J, Bette S, Sturgis JN, Lartigue A, Cambillau C, Breer H, Tegoni M: Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone binding proteins with a fluorescence binding assay. J Biol Chem 2001, 276:20078-20084.
- [59]Xu P, Hooper AM, Pickett JA, Leal WS: Specificity determinants of the silkworm moth sex pheromone. PLoS One 2012, 7:e44190.
- [60]Vander Meer RK, Breed MD, Espelie KE, Winston ML: Pheromone Communication in Social Insects. Boulder CO: Westview Press; 1998.
- [61]Nozawa M, Nei M: Evolutionary dynamics of olfactory receptor genes in Drosophila species. PNAS 2007, 104:7122-7127.
- [62]Ravary F, Jahyny B, Jaisson P: Brood stimulation controls the phasic reproductive cycle of the parthenogenetic ant Cerapachys biroi. Insect Soc 2006, 53:20-26.
- [63]Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25:1105-1111.
- [64]Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Patcher L: Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 2013, 31:46-53.
- [65]Simpson JT, Wonk K, Jackman SD, Schein JE, Jones SJ, Birol I: ABySS: a parallel assembler for short read sequence data. Genome Res 2009, 19:1117-1123.
- [66]Ferreira PG, Patalano S, Chauhan R, Ffrench-Constant R, Gabaldon T, Guigo R, Sumner S: Transcriptomic analyses of primitively eusocial wasps reveal novel insights into the evolution of sociality and the origin of alternative phenotypes. Genome Biol 2013, 14:R20.
- [67]Suchard MA, Redelings BD: BAli-Phy: simultaneous Bayesian inference of alignment and phylogeny. Bioinformatics 2006, 22:2047-2048.
- [68]Vieira FG, Forêt S, He X, Rozas J, Field LM, Zhou J-J: Unique features of odorant-binding proteins of the parasitoid wasp Nasonia vitripennis revealed by genome annotation and comparative analyses. PLoS One 2012, 7:e43034.
- [69]Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, The Nasonia Genome Working Group: Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 2010, 327:343-348.
- [70]Katoh K, Kuma K, Toh H, Miyata T: MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucl Acids Res 2005, 33:511-518.
- [71]Abascal F, Zardoya R, Posada D: ProtTest: selection of best-fit models of protein evolution. Bioinformatics 2005, 21:2104-2105.
- [72]Le SQ, Gascuel O: An improved general amino acid replacement matrix. Mol Biol Evol 2008, 25:1307-1320.
- [73]Stamatakis A, Ludwig T, Meier H: RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 2005, 21:456-463.
- [74]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214.
- [75]Lemey P, Salemi M, Vandamme A-M: The Phylogenetic Handbook. 2nd edition. Cambridge, UK: Cambridge University Press; 2009.
- [76]Johnson BR, Borowiec ML, Chiu JC, Lee EK, Atallah J, Ward PS: Phylogenomics resolves evolutionary relationships among ants, bees, and wasps. Current Biol 2013, 23:2058-2062.
- [77]Slater GS, Birney E: Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 2005, 6:31.
- [78]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
- [79]Sanderson MJ: r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 2002, 19:301-302.
- [80]Moreau CS, Bell CD: Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution 2013, 67:2240-2257.
- [81]Wong WSW, Yang Z, Goldman N, Nielsen R: Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics 2004, 168:1041-1051.
- [82]Yang Z, Wong WSW, Nielsen R: Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 2005, 22:1107-1118.
- [83]Bielawski JP, Yang Z: A maximum likelihood method for detecting functional divergence at individual codon sites, with application to gene family evolution. J Mol Evol 2004, 59:121-113.
- [84]Weadick CJ, Chang BS: An improved likelihood ratio test for detecting site-specific functional divergence among clades of protein-coding genes. Mol Biol Evol 2012, 29:1297-1300.