期刊论文详细信息
BMC Molecular Biology
Identification of differences in microRNA transcriptomes between porcine oxidative and glycolytic skeletal muscles
Xuewei Li2  Xiaolian Gao1  Tao Wang2  Chaowei Zhou2  Jie Zhang2  Jideng Ma2  Mingzhou Li2  Yingkai Liu2 
[1] Department of Biology & Biochemistry, University of Houston, Houston, TX, USA;Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya’an, Sichuan, China
关键词: Pig;    Psoas major muscle;    Longissimus doris muscle;    Deep sequencing;    microRNA;   
Others  :  1091153
DOI  :  10.1186/1471-2199-14-7
 received in 2012-08-30, accepted in 2013-02-15,  发布年份 2013
PDF
【 摘 要 】

Background

MicroRNAs (miRNAs) are a type of non-coding small RNA ~22 nucleotides in length that regulate the expression of protein coding genes at the post-transcriptional level. Glycolytic and oxidative myofibers, the two main types of skeletal muscles, play important roles in metabolic health as well as in meat quality and production in the pig industry. Previous expression profile studies of different skeletal muscle types have focused on these aspects of mRNA and proteins; nonetheless, an explanation of the miRNA transcriptome differences between these two distinct muscles types is long overdue.

Results

Herein, we present a comprehensive analysis of miRNA expression profiling between the porcine longissimus doris muscle (LDM) and psoas major muscle (PMM) using a deep sequencing approach. We generated a total of 16.62 M (LDM) and 18.46 M (PMM) counts, which produced 15.22 M and 17.52 M mappable sequences, respectively, and identified 114 conserved miRNAs and 89 novel miRNA*s. Of 668 unique miRNAs, 349 (52.25%) were co-expressed, of which 173 showed significant differences (P < 0.01) between the two muscle types. Muscle-specific miR-1-3p showed high expression levels in both libraries (LDM, 32.01%; PMM, 20.15%), and miRNAs that potentially affect metabolic pathways (such as the miR-133 and -23) showed significant differences between the two libraries, indicating that the two skeletal muscle types shared mainly muscle-specific miRNAs but expressed at distinct levels according to their metabolic needs. In addition, an analysis of the Gene Ontology (GO) terms and KEGG pathway associated with the predicted target genes of the differentially expressed miRNAs revealed that the target protein coding genes of highly expressed miRNAs are mainly involved in skeletal muscle structural development, regeneration, cell cycle progression, and the regulation of cell motility.

Conclusion

Our study indicates that miRNAs play essential roles in the phenotypic variations observed in different muscle fiber types.

【 授权许可】

   
2013 Liu et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128165938849.pdf 512KB PDF download
Figure 3. 51KB Image download
Figure 2. 45KB Image download
Figure 1. 38KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Choi Y, Kim B: Muscle fiber characteristics, myofibrillar protein isoforms, and meat quality. Livestock Science 2009, 122(2–3):105-118.
  • [2]Kim NK, Joh JH, Park HR, Kim OH, Park BY, Lee CS: Differential expression profiling of the proteomes and their mRNAs in porcine white and red skeletal muscles. Proteomics 2004, 4(11):3422-3428.
  • [3]Campbell WG, Gordon SE, Carlson CJ, Pattison JS, Hamilton MT, Booth FW: Differential global gene expression in red and white skeletal muscle. Am J Physiol Cell Physiol 2001, 280(4):C763-C768.
  • [4]Bai Q, McGillivray C, da Costa N, Dornan S, Evans G, Stear MJ, Chang KC: Development of a porcine skeletal muscle cDNA microarray: analysis of differential transcript expression in phenotypically distinct muscles. BMC Genomics 2003, 4(1):8. BioMed Central Full Text
  • [5]Li Y, Xu Z, Li H, Xiong Y, Zuo B: Differential transcriptional analysis between red and white skeletal muscle of Chinese Meishan pigs. Int J Biol Sci 2010, 6(4):350-360.
  • [6]Vitorino R, Ferreira R, Neuparth M, Guedes S, Williams J, Tomer KB, Domingues PM, Appell HJ, Duarte JA, Amado FM: Subcellular proteomics of mice gastrocnemius and soleus muscles. Anal Biochem 2007, 366(2):156-169.
  • [7]Okumura N, Hashida-Okumura A, Kita K, Matsubae M, Matsubara T, Takao T, Nagai K: Proteomic analysis of slow- and fast-twitch skeletal muscles. Proteomics 2005, 5(11):2896-2906.
  • [8]Gelfi C, Vigano A, De Palma S, Ripamonti M, Begum S, Cerretelli P, Wait R: 2-D protein maps of rat gastrocnemius and soleus muscles: a tool for muscle plasticity assessment. Proteomics 2006, 6(1):321-340.
  • [9]Glancy B, Balaban RS: Protein composition and function of red and white skeletal muscle mitochondria. Am J Physiol Cell Physiol 2011, 300(6):C1280-C1290.
  • [10]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-297.
  • [11]Lai EC: miRNAs: whys and wherefores of miRNA-mediated regulation. Curr Biol 2005, 15(12):R458-R460.
  • [12]Chan SP, Slack FJ: microRNA-mediated silencing inside P-bodies. RNA Biol 2006, 3(3):97-100.
  • [13]Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T: Identification of tissue-specific microRNAs from mouse. Curr Biol 2002, 12(9):735-739.
  • [14]Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, Bouix J, Caiment F, Elsen JM, Eychenne F, et al.: A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 2006, 38(7):813-818.
  • [15]Eisenberg I, Eran A, Nishino I, Moggio M, Lamperti C, Amato AA, Lidov HG, Kang PB, North KN, Mitrani-Rosenbaum S, et al.: Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci U S A 2007, 104(43):17016-17021.
  • [16]McCarthy JJ, Esser KA: MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol 2007, 102(1):306-313.
  • [17]McCarthy JJ, Esser KA, Andrade FH: MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse. Am J Physiol Cell Physiol 2007, 293(1):C451-C457.
  • [18]Callis TE, Deng Z, Chen JF, Wang DZ: Muscling through the microRNA world. Exp Biol Med (Maywood) 2008, 233(2):131-138.
  • [19]Wilfred BR, Wang WX, Nelson PT: Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol Genet Metab 2007, 91(3):209-217.
  • [20]Williams AH, Liu N, van Rooij E, Olson EN: MicroRNA control of muscle development and disease. Curr Opin Cell Biol 2009, 21(3):461-469.
  • [21]Sethupathy P, Collins FS: MicroRNA target site polymorphisms and human disease. Trends Genet 2008, 24(10):489-497.
  • [22]Zhao Y, Srivastava D: A developmental view of microRNA function. Trends Biochem Sci 2007, 32(4):189-197.
  • [23]Rocha D, Plastow G: Commercial pigs: an untapped resource for human obesity research? Drug Discov Today 2006, 11(11–12):475-477.
  • [24]Sharbati S, Friedlander MR, Sharbati J, Hoeke L, Chen W, Keller A, Stahler PF, Rajewsky N, Einspanier R: Deciphering the porcine intestinal microRNA transcriptome. BMC Genomics 2010, 11:275. BioMed Central Full Text
  • [25]Nielsen M, Hansen JH, Hedegaard J, Nielsen RO, Panitz F, Bendixen C, Thomsen B: MicroRNA identity and abundance in porcine skeletal muscles determined by deep sequencing. Anim Genet 2010, 41(2):159-168.
  • [26]Reddy AM, Zheng Y, Jagadeeswaran G, Macmil SL, Graham WB, Roe BA, Desilva U, Zhang W, Sunkar R: Cloning, characterization and expression analysis of porcine microRNAs. BMC Genomics 2009, 10:65. BioMed Central Full Text
  • [27]O'Rourke JR, Georges SA, Seay HR, Tapscott SJ, McManus MT, Goldhamer DJ, Swanson MS, Harfe BD: Essential role for Dicer during skeletal muscle development. Dev Biol 2007, 311(2):359-368.
  • [28]Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, et al.: A uniform system for microRNA annotation. RNA 2003, 9(3):277-279.
  • [29]Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T: Identification of novel genes coding for small expressed RNAs. Science 2001, 294(5543):853-858.
  • [30]Kuchenbauer F, Morin RD, Argiropoulos B, Petriv OI, Griffith M, Heuser M, Yung E, Piper J, Delaney A, Prabhu AL, et al.: In-depth characterization of the microRNA transcriptome in a leukemia progression model. Genome Res 2008, 18(11):1787-1797.
  • [31]Glazov EA, Cottee PA, Barris WC, Moore RJ, Dalrymple BP, Tizard ML: a microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res 2008, 18(6):957-964.
  • [32]Lian C, Sun B, Niu S, Yang R, Liu B, Lu C, Meng J, Qiu Z, Zhang L, Zhao Z: a Comparative Profile of the MicroRNA Transcriptome in Immature and Mature Porcine Testes using Solexa Deep Sequencing. FEBS J 2012, 279(6):964-975.
  • [33]Xie SS, Li XY, Liu T, Cao JH, Zhong Q, Zhao SH: Discovery of porcine microRNAs in multiple tissues by a Solexa deep sequencing approach. PLoS One 2011, 6(1):e16235.
  • [34]Li M, Xia Y, Gu Y, Zhang K, Lang Q, Chen L, Guan J, Luo Z, Chen H, Li Y, et al.: MicroRNAome of porcine pre- and postnatal development. PLoS One 2010, 5(7):e11541.
  • [35]Glazov EA, Kongsuwan K, Assavalapsakul W, Horwood PF, Mitter N, Mahony TJ: Repertoire of bovine miRNA and miRNA-like small regulatory RNAs expressed upon viral infection. PLoS One 2009, 4(7):e6349.
  • [36]Romualdi C, Bortoluzzi S, D'Alessi F, Danieli GA: IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiol Genomics 2003, 12(2):159-162.
  • [37]Li M, Liu Y, Wang T, Guan J, Luo Z, Chen H, Wang X, Chen L, Ma J, Mu Z, et al.: Repertoire of porcine microRNAs in adult ovary and testis by deep sequencing. Int J Biol Sci 2011, 7(7):1045-1055.
  • [38]Li T, Wu R, Zhang Y, Zhu D: A systematic analysis of the skeletal muscle miRNA transcriptome of chicken varieties with divergent skeletal muscle growth identifies novel miRNAs and differentially expressed miRNAs. BMC Genomics 2011, 12:186. BioMed Central Full Text
  • [39]Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006, 38(2):228-233.
  • [40]Huang TH, Zhu MJ, Li XY, Zhao SH: Discovery of porcine microRNAs and profiling from skeletal muscle tissues during development. PLoS One 2008, 3(9):e3225.
  • [41]McDaneld TG, Smith TP, Doumit ME, Miles JR, Coutinho LL, Sonstegard TS, Matukumalli LK, Nonneman DJ, Wiedmann RT: MicroRNA transcriptome profiles during swine skeletal muscle development. BMC Genomics 2009, 10:77. BioMed Central Full Text
  • [42]Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, et al.: Combinatorial microRNA target predictions. Nat Genet 2005, 37(5):495-500.
  • [43]Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB: Prediction of mammalian microRNA targets. Cell 2003, 115(7):787-798.
  • [44]Brennecke R: Requirements of a future-oriented social medicine. Gesundheitswesen 2005, 67(2):81-88.
  • [45]da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
  • [46]Mahoney DJ, Parise G, Melov S, Safdar A, Tarnopolsky MA: Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J 2005, 19(11):1498-1500.
  • [47]Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S, Harel-Bellan A: The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 2006, 8(3):278-284.
  • [48]Safdar A, Abadi A, Akhtar M, Hettinga BP, Tarnopolsky MA: miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice. PLoS One 2009, 4(5):e5610.
  • [49]Niu Z, Li A, Zhang SX, Schwartz RJ: Serum response factor micromanaging cardiogenesis. Curr Opin Cell Biol 2007, 19(6):618-627.
  • [50]Boutz PL, Chawla G, Stoilov P, Black DL: MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev 2007, 21(1):71-84.
  • [51]Yuasa K, Hagiwara Y, Ando M, Nakamura A, Takeda S, Hijikata T: MicroRNA-206 is highly expressed in newly formed muscle fibers: implications regarding potential for muscle regeneration and maturation in muscular dystrophy. Cell Struct Funct 2008, 33(2):163-169.
  • [52]Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, et al.: Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 2002, 418(6899):797-801.
  • [53]Handschin C, Spiegelman BM: The role of exercise and PGC1alpha in inflammation and chronic disease. Nature 2008, 454(7203):463-469.
  • [54]Guerau-de-Arellano M, Alder H, Ozer HG, Lovett-Racke A, Racke MK: miRNA profiling for biomarker discovery in multiple sclerosis: from microarray to deep sequencing. J Neuroimmunol 2012, 248(1–2):32-39.
  • [55]Wang J, Xiang G, Mitchelson K, Zhou Y: Microarray profiling of monocytic differentiation reveals miRNA-mRNA intrinsic correlation. J Cell Biochem 2011, 112(9):2443-2453.
  • [56]Roy S, Soh JH, Gao Z: A microfluidic-assisted microarray for ultrasensitive detection of miRNA under an optical microscope. Lab Chip 2011, 11(11):1886-1894.
  文献评价指标  
  下载次数:33次 浏览次数:11次