期刊论文详细信息
BMC Neuroscience
High-frequency stimulation of the subthalamic nucleus modifies the expression of vesicular glutamate transporters in basal ganglia in a rat model of Parkinson’s disease
Marc Savasta2  Salah El Mestikawy3  Sabrina Boulet1  Guillaume Drui1  Carole Carcenac1  Mathieu Favier1 
[1] Université de Grenoble, Grenoble F- 38042, France;Centre Hospitalier Universitaire de Grenoble, BP217, Grenoble F-38043, France;Department of Psychiatry, Douglas Hospital Research Center, McGill University, 6875, boulevard Lasalle, Verdun, QC, Canada
关键词: Vesicular glutamate transporters;    Glutamate;    Rat;    6-OHDA-lesion;    Basal Ganglia;    Parkinson’s disease;    Subthalamic nucleus;    High frequency stimulation;   
Others  :  1131182
DOI  :  10.1186/1471-2202-14-152
 received in 2013-07-31, accepted in 2013-11-27,  发布年份 2013
PDF
【 摘 要 】

Background

It has been suggested that glutamatergic system hyperactivity may be related to the pathogenesis of Parkinson’s disease (PD). Vesicular glutamate transporters (VGLUT1-3) import glutamate into synaptic vesicles and are key anatomical and functional markers of glutamatergic excitatory transmission. Both VGLUT1 and VGLUT2 have been identified as definitive markers of glutamatergic neurons, but VGLUT 3 is also expressed by non glutamatergic neurons. VGLUT1 and VGLUT2 are thought to be expressed in a complementary manner in the cortex and the thalamus (VL/VM), in glutamatergic neurons involved in different physiological functions. Chronic high-frequency stimulation (HFS) of the subthalamic nucleus (STN) is the neurosurgical therapy of choice for the management of motor deficits in patients with advanced PD. STN-HFS is highly effective, but its mechanisms of action remain unclear. This study examines the effect of STN-HFS on VGLUT1-3 expression in different brain nuclei involved in motor circuits, namely the basal ganglia (BG) network, in normal and 6-hydroxydopamine (6-OHDA) lesioned rats.

Results

Here we report that: 1) Dopamine(DA)-depletion did not affect VGLUT1 and VGLUT3 expression but significantly decreased that of VGLUT2 in almost all BG structures studied; 2) STN-HFS did not change VGLUT1-3 expression in the different brain areas of normal rats while, on the contrary, it systematically induced a significant increase of their expression in DA-depleted rats and 3) STN-HFS reversed the decrease in VGLUT2 expression induced by the DA-depletion.

Conclusions

These results show for the first time a comparative analysis of changes of expression for the three VGLUTs induced by STN-HFS in the BG network of normal and hemiparkinsonian rats. They provide evidence for the involvement of VGLUT2 in the modulation of BG cicuits and in particular that of thalamostriatal and thalamocortical pathways suggesting their key role in its therapeutic effects for alleviating PD motor symptoms.

【 授权许可】

   
2013 Favier et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150301021424704.pdf 1380KB PDF download
Figure 4. 99KB Image download
Figure 3. 108KB Image download
Figure 2. 104KB Image download
Figure 1. 89KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Carlsson M, Carlsson A: Interactions between glutamatergic and monoaminergic systems within the basal ganglia–implications for schizophrenia and Parkinson’s disease. Trends Neurosci 1990, 13:272-276.
  • [2]Lang AE, Lozano AM: Parkinson’s disease. First of two parts. N Engl J Med 1998, 339:1044-1053.
  • [3]Lang AE, Lozano AM: Parkinson’s disease. Second of two parts. N Engl J Med 1998, 339:1130-1143.
  • [4]Lange KW, Kornhuber J, Riederer P: Dopamine/glutamate interactions in Parkinson’s disease. Neurosci Biobehav Rev 1997, 21:393-400.
  • [5]Abarca J, Gysling K, Roth RH, Bustos G: Changes in extracellular levels of glutamate and aspartate in rat substantia nigra induced by dopamine receptor ligands: in vivo microdialysis studies. Neurochem Res 1995, 20:159-169.
  • [6]Biggs CS, Starr MS: Dopamine and glutamate control each other’s release in the basal ganglia: a microdialysis study of the entopeduncular nucleus and substantia nigra. Neurosci Biobehav Rev 1997, 21:497-504.
  • [7]Blandini F, Porter RH, Greenamyre JT: Glutamate and Parkinson’s disease. Mol Neurobiol 1996, 12:73-94.
  • [8]Greenamyre JT: Glutamate-dopamine interactions in the basal ganglia: relationship to Parkinson’s disease. J Neural Transm Gen Sect 1993, 91:255-269.
  • [9]Lindefors N, Ungerstedt U: Bilateral regulation of glutamate tissue and extracellular levels in caudate-putamen by midbrain dopamine neurons. Neurosci Lett 1990, 115:248-252.
  • [10]Walker RH, Koch RJ, Sweeney JE, Moore C, Meshul CK: Effects of subthalamic nucleus lesions and stimulation upon glutamate levels in the dopamine-depleted rat striatum. NeuroReport 2009, 20:770-775.
  • [11]Walker RH, Moore C, Davies G, Dirling LB, Koch RJ, Meshul CK: Effects of subthalamic nucleus lesions and stimulation upon corticostriatal afferents in the 6-hydroxydopamine-lesioned rat. PLoS One 2012, 7:e32919.
  • [12]Quintana A, Sgambato-Faure V, Savasta M: Effects of L-DOPA and STN-HFS dyskinesiogenic treatments on NR2B regulation in basal ganglia in the rat model of Parkinson’s disease. Neurobiol Dis 2012, 48:379-390.
  • [13]Sgambato-Faure V, Cenci MA: Glutamatergic mechanisms in the dyskinesias induced by pharmacological dopamine replacement and deep brain stimulation for the treatment of Parkinson’s disease. Prog Neurobiol 2012, 96:69-86.
  • [14]Boulet S, Lacombe E, Carcenac C, Feuerstein C, Sgambato-Faure V, Poupard A, Savasta M: Subthalamic stimulation-induced forelimb dyskinesias are linked to an increase in glutamate levels in the substantia nigra pars reticulata. J Neurosci 2006, 26:10768-10776.
  • [15]Windels F, Bruet N, Poupard A, Urbain N, Chouvet G, Feuerstein C, Savasta M: Effects of high frequency stimulation of subthalamic nucleus on extracellular glutamate and GABA in substantia nigra and globus pallidus in the normal rat. Eur J Neurosci 2000, 12:4141-4146.
  • [16]Windels F, Carcenac C, Poupard A, Savasta M: Pallidal origin of GABA release within the substantia nigra pars reticulata during high-frequency stimulation of the subthalamic nucleus. J Neurosci 2005, 25:5079-5086.
  • [17]Hassani OK, Mouroux M, Feger J: Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of disinhibition via the globus pallidus. Neuroscience 1996, 72:105-115.
  • [18]El Mestikawy S, Wallén-Mackenzie A, Fortin GM, Descarries L, Trudeau LE: From glutamate co-release to vesicular synergy: vesicular glutamate transporters. Nat Rev Neurosci 2011, 12:204-216.
  • [19]Aihara Y, Mashima H, Onda H, Hisano S, Kasuya H, Hori T, Yamada S, Tomura H, Yamada Y, Inoue I, Kojima I, Takeda J: Molecular cloning of a novel brain-type Na(+)-dependent inorganic phosphate cotransporter. J Neurochem 2000, 74:2622-2625.
  • [20]Bellocchio EE, Reimer RJ, Fremeau RT, Edwards RH: Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 2000, 289:957-960.
  • [21]Fremeau RT Jr, Kam K, Qureshi T, Johnson J, Copenhagen DR, Storm-Mathisen J, Chaudhry FA, Nicoll RA, Edwards RH: Vesicular glutamate transporters 1 and 2 target to functionally distinct synaptic release sites. Science 2004, 304:1815-1819.
  • [22]Gras C, Herzog E, Bellenchi GC, Bernard V, Ravassard P, Pohl M, Gasnier B, Giros B, El Mestikawy S: A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J Neurosci 2002, 22:5442-5451.
  • [23]Herzog E, Bellenchi GC, Gras C, Bernard V, Ravassard P, Bedet C, Gasnier B, Giros B, El Mestikawy S: The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J Neurosci 2001, 21:RC181.
  • [24]Takamori S, Rhee JS, Rosenmund C, Jahn R: Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 2000, 407:189-194.
  • [25]Takamori S, Rhee JS, Rosenmund C, Jahn R: Identification of differentiation-associated brain-specific phosphate transporter as a second vesicular glutamate transporter (VGLUT2). J Neurosci 2001, 21:RC182.
  • [26]Herzog E, Gilchrist J, Gras C, Muzerelle A, Ravassard P, Giros B, Gaspar P, El Mestikawy S: Localization of VGLUT3, the vesicular glutamate transporter type 3, in the rat brain. Neuroscience 2004, 123:983-1002.
  • [27]Benabid AL, Pollak P, Gross C, Hoffmann D, Benazzouz A, Gao DM, Laurent A, Gentil M, Perret J: Acute and long-term effects of subthalamic nucleus stimulation in Parkinson’s disease. Stereotact Funct Neurosurg 1994, 62:76-84.
  • [28]Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, Koudsie A, Limousin PD, Benazzouz A, LeBas JF, Benabid AL, Pollak P: Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 2003, 349:1925-1934.
  • [29]Limousin P, Pollak P, Benazzouz A, Hoffman D, Broussolle E, Perret JE, Benabid AL: Bilateral subthalamic nucleus stimulation for severe Parkinson’s disease. Mov Disord 1995, 10:672-674.
  • [30]Dostrovsky JO, Lozano AM: Mechanisms of deep brain stimulation. Mov Disord 2002, 17(Suppl 3):S63-S68.
  • [31]McIntyre CC, Savasta M, Kerkerian-Le Goff L, Vitek JL: Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 2004, 115:1239-1248.
  • [32]Savasta M, Carcenac C, Boulet S: Mechanisms of High Frequency Stimulation of the Subthalamic Nucleus in Parkinson’s Disease: From Local to Distal Effects on the Basal Ganglia Network. In Diagnosis and Treatment of Parkinson’s Disease. Edited by Rana AQ. Rijeka-Croatia: In Tech; 2011:211-232.
  • [33]Deniau JM, Degos B, Bosch C, Maurice N: Deep brain stimulation mechanisms: beyond the concept of local functional inhibition. Eur J Neurosci 2010, 32:1080-1091.
  • [34]Bruet N, Windels F, Carcenac C, Feuerstein C, Bertrand A, Poupard A, Savasta M: Neurochemical mechanisms induced by high frequency stimulation of the subthalamic nucleus: increase of extracellular striatal glutamate and GABA in normal and hemiparkinsonian rats. J Neuropathol Exp Neurol 2003, 62:1228-1240.
  • [35]Paxinos G, Watson C: The rat brain. In Stereotaxic coordinates. 4th edition. San Diego: Academic Press; 1982.
  • [36]Bruet N, Windels F, Bertrand A, Feuerstein C, Poupard A, Savasta M: High frequency stimulation of the subthalamic nucleus increases the extracellular contents of striatal dopamine in normal and partially dopaminergic denervated rats. J Neuropathol Exp Neurol 2001, 60:15-24.
  • [37]Salin P, Manrique C, Forni C, Kerkerian-Le Goff L: High-frequency stimulation of the subthalamic nucleus selectively reverses dopamine denervation-induced cellular defects in the output structures of the basal ganglia in the rat. J Neurosci 2002, 22:5137-5148.
  • [38]Gras C, Amilhon B, Lepicard EM, Poirel O, Vinatier J, Herbin M, Dumas S, Tzavara ET, Wade MR, Nomikos GG, Hanoun N, Saurini F, Kemel ML, Gasnier B, Giros B, El Mestikawy S: The vesicular glutamate transporter VGLUT3 synergizes striatal acetylcholine tone. Nat Neurosci 2008, 11:292-300.
  • [39]Kaneko T, Fujiyama F, Hioki H: Immunohistochemical localization of candidates for vesicular glutamate transporters in the rat brain. J Comp Neurol 2002, 444:39-62.
  • [40]Dzahini K, Dentresangle C, Le Cavorsin M, Bertrand A, Detraz I, Savasta M, Leviel V: Pre-synaptic glutamate-induced activation of DA release in the striatum after partial nigral lesion. J Neurochem 2010, 113:1459-1470.
  • [41]Fan XD, Li XM, Ashe PC, Juorio AV: Lesion of the substantia nigra pars compacta downregulates striatal glutamate receptor subunit mRNA expression. Brain Res 1999, 850:79-86.
  • [42]Massie A, Schallier A, Vermoesen K, Arckens L, Michotte Y: Biphasic and bilateral changes in striatal VGLUT1 and 2 protein expression in hemi-Parkinson rats. Neurochem Int 2010, 57:111-118.
  • [43]Meshul CK, Cogen JP, Cheng HW, Moore C, Krentz L, McNeill TH: Alterations in rat striatal glutamate synapses following a lesion of the cortico- and/or nigrostriatal pathway. Exp Neurol 2000, 165:191-206.
  • [44]Meshul CK, Emre N, Nakamura CM, Allen C, Donohue MK, Buckman JF: Time-dependent changes in striatal glutamate synapses following a 6-hydroxydopamine lesion. Neuroscience 1999, 88:1-16.
  • [45]Robinson S, Freeman P, Moore C, Touchon JC, Krentz L, Meshul CK: Acute and subchronic MPTP administration differentially affects striatal glutamate synaptic function. Exp Neurol 2003, 180:74-87.
  • [46]Calabresi P, Mercuri NB, Sancesario G, Bernardi G: Electrophysiology of dopamine-denervated striatal neurons. Implications for Parkinson’s disease. Brain 1993, 116:433-452.
  • [47]Gubellini P, Eusebio A, Oueslati A, Melon C, Kerkerian-Le Goff L, Salin P: Chronic high-frequency stimulation of the subthalamic nucleus and L-DOPA treatment in experimental parkinsonism: effects on motor behaviour and striatal glutamate transmission. Eur J Neurosci 2006, 24:1802-1814.
  • [48]Villalba RM, Smith Y: Differential structural plasticity of corticostriatal and thalamostriatal axo-spinous synapses in MPTP-treated Parkinsonian monkeys. J Comp Neurol 2011, 519:989-1005.
  • [49]Aymerich MS, Barroso-Chinea P, Pérez-Manso M, Muñoz-Patiño AM, Moreno-Igoa M, González-Hernández T, Lanciego JL: Consequences of unilateral nigrostriatal denervation on the thalamostriatal pathway in rats. Eur J Neurosci 2006, 23:2099-2108.
  • [50]Herrera-Marschitz M, You ZB, Goiny M, Meana JJ, Silveira R, Godukhin OV, Chen Y, Espinoza S, Pettersson E, Loidl F, Lubec G, Andersson K, Nylander I, Terenius L, Ungerstedt U: On the origin of extracellular glutamate levels monitored in the basal ganglia of the rat by in vivo microdialysis. J Neurochem 1996, 66:1726-1735.
  • [51]Baker DA, Xi ZX, Shen H, Swanson CJ, Kalivas PW: The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 2002, 22:9134-9141.
  • [52]Danbolt NC: Glutamate uptake. Prog Neurobiol 2001, 65:1-105.
  • [53]Chung EK, Chen LW, Chan YS, Yung KK: Downregulation of glial glutamate transporters after dopamine denervation in the striatum of 6-hydroxydopamine-lesioned rats. J Comp Neurol 2008, 511:421-437.
  • [54]Lievens JC, Salin P, Nieoullon A, Kerkerian-Le Goff L: Nigrostriatal denervation does not affect glutamate transporter mRNA expression but subsequent levodopa treatment selectively increases GLT1 mRNA and protein expression in the rat striatum. J Neurochem 2001, 79:893-902.
  • [55]Chung EK, Chen LW, Chan YS, Yung KK: Up-regulation in expression of vesicular glutamate transporter 3 in substantia nigra but not in striatum of 6-hydroxydopamine-lesioned rats. Neurosignals 2006, 15:238-248.
  • [56]Kashani A, Betancur C, Giros B, Hirsch E, El Mestikawy S: Altered expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in Parkinson disease. Neurobiol Aging 2007, 28:568-578.
  • [57]Robelet S, Melon C, Guillet B, Salin P, Kerkerian-Le Goff L: Chronic L-DOPA treatment increases extracellular glutamate levels and GLT1 expression in the basal ganglia in a rat model of Parkinson’s disease. Eur J Neurosci 2004, 20:1255-1266.
  • [58]Raju DV, Ahern TH, Shah DJ, Wright TM, Standaert DG, Hall RA, Smith Y: Differential synaptic plasticity of the corticostriatal and thalamostriatal systems in an MPTP-treated monkey model of parkinsonism. Eur J Neurosci 2008, 27:1647-1658.
  • [59]Albin RL, Young AB, Penney JB: The functional anatomy of basal ganglia disorders. Trends Neurosci 1989, 12:366-375.
  • [60]Henderson JM, Carpenter K, Cartwright H, Halliday GM: Degeneration of the centre median-parafascicular complex in Parkinson’s disease. Ann Neurol 2000, 47:345-352.
  • [61]Smith Y, Raju D, Nanda B, Pare JF, Galvan A, Wichmann T: The thalamostriatal systems: anatomical and functional organization in normal and parkinsonian states. Brain Res Bull 2009, 78:60-68.
  • [62]Lacey CJ, Boyes J, Gerlach O, Chen L, Magill PJ, Bolam JP: GABA(B) receptors at glutamatergic synapses in the rat striatum. Neuroscience 2005, 136:1083-1095.
  • [63]Gomide VC, Silveira GA, Chadi G: Transient and widespread astroglial activation in the brain afetr a striatal 6-OHDA-induced-partial lesion of the nigrostriatal system. Intern J Neurosci 2005, 115:99-117.
  • [64]Henning J, Strauss U, Wree A, Gimsa J, Rolfs A, Benecke R, Gimsa U: Differential astroglia activation in 6-hydroxydopaminemodels of parkinson’s disease. Neurosci Res 2008, 62:246-253.
  • [65]DeLong MR: Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990, 13:281-285.
  • [66]Hahn PJ, McIntyre CC: Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation. J Comput Neurosci 2010, 28:425-441.
  • [67]Li S, Arbuthnott GW, Jutras MJ, Goldberg JA, Jaeger D: Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation. J Neurophysiol 2007, 98:3525-3537.
  • [68]Maurice N, Thierry AM, Glowinski J, Deniau JM: Spontaneous and evoked activity of substantia nigra pars reticulata neurons during high-frequency stimulation of the subthalamic nucleus. J Neurosci 2003, 23:9929-9936.
  • [69]Jouve L, Salin P, Melon C, Kerkerian-Le Goff L: Deep brain stimulation of the center median-parafascicular complex of the thalamus has efficient anti-parkinsonian action associated with widespread cellular responses in the basal ganglia network in a rat model of Parkinson’s disease. J Neurosci 2010, 30:9919-9928.
  • [70]Kerkerian-Le Goff L, Bacci JJ, Jouve L, Melon C, Salin P: Impact of surgery targeting the caudal intralaminar thalamic nuclei on the pathophysiological functioning of basal ganglia in a rat model of Parkinson’s disease. Brain Res Bull 2009, 78:80-84.
  • [71]Varoqui H, Schäfer MK, Zhu H, Weihe E, Erickson JD: Identification of the differentiation-associated Na+/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci 2002, 22:142-155.
  • [72]Gao ZG, Cui WY, Liu CG: Modulation of apomorphine-induced rotations in unilaterally 6-hydroxydopamine lesioned rats by cholinergic agonists and antagonists. Life Sci 1997, 60:PL 317-PL 323.
  • [73]Navailles S, Benazzouz A, Bioulac B, Gross C, De Deurwaerdère P: High-frequency stimulation of the subthalamic nucleus and L-3,4-dihydroxyphenylalanine inhibit in vivo serotonin release in the prefrontal cortex and hippocampus in a rat model of Parkinson’s disease. J Neurosci 2010, 30:2356-2364.
  • [74]Temel Y, Boothman LJ, Blokland A, Magill PJ, Steinbusch HW, Visser-Vandewalle V, Sharp T: Inhibition of 5-HT neuron activity and induction of depressive-like behavior by high-frequency stimulation of the subthalamic nucleus. Proc Natl Acad Sci U S A 2007, 104:17087-17092.
  文献评价指标  
  下载次数:62次 浏览次数:18次