期刊论文详细信息
BMC Microbiology
The role of ClpP, RpoS and CsrA in growth and filament formation of Salmonella enterica serovar Typhimurium at low temperature
John Elmerdahl Olsen4  Ivan Rychlik2  Søren Aabo1  Line Elnif Thomsen4  Maj-Britt Nielsen3  Gitte Maegaard Knudsen5 
[1] National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, Søborg 2860, Denmark;Veterinary Research Institute, Hudcova 70, Brno, 621 00, Czech Republic;Present address: MBN: DANSTEM, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N 2200, Denmark;Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, Frederiksberg C 1870, Denmark;Present address: GMK: Department of Systems Biology, Technical University of Denmark, Matematiktorvet bldg 301, Kgs, Lyngby, 2800, Denmark
关键词: CsrA;    RpoS;    ClpP;    Cold adaptation;    Salmonella;   
Others  :  1140586
DOI  :  10.1186/s12866-014-0208-4
 received in 2014-05-27, accepted in 2014-07-21,  发布年份 2014
PDF
【 摘 要 】

Background

Salmonellae are food-borne pathogens of great health and economic importance. To pose a threat to humans, Salmonellae normally have to cope with a series of stressful conditions in the food chain, including low temperature. In the current study, we evaluated the importance of the Clp proteolytic complex and the carbon starvation protein, CsrA, for the ability of Salmonella Typhimurium to grow at low temperature.

Results

A clpP mutant was severely affected in growth and formed pin point colonies at 10°C. Contrary to this, rpoS and clpP/rpoS mutants were only slightly affected. The clpP mutant formed cold resistant suppressor mutants at a frequency of 2.5 × 10−3 and these were found not to express RpoS. Together these results indicated that the impaired growth of the clpP mutant was caused by high level of RpoS. Evaluation by microscopy of the clpP mutant revealed that it formed filamentous cells when grown at 10°C, and this phenotype too, disappered when rpoS was mutated in parallel indicating a RpoS-dependency. A csrA (sup) mutant was also growth attenuated a low temperature. An rpoS/csrA (sup) double mutant was also growth attenuated, indicating that the phenotype of the csrA mutant was independent from RpoS.

Conclusions

The cold sensitivity of clpP mutant was associated with increased levels of RpoS and probably caused by toxic levels of RpoS. Although a csrA mutant also accumulated high level of RpoS, growth impairment caused by lack of csrA was not related to RpoS levels in a similar way.

【 授权许可】

   
2014 Knudsen et al.; licensee BioMed Central Ltd

【 预 览 】
附件列表
Files Size Format View
20150325051300769.pdf 910KB PDF download
Figure 4. 20KB Image download
Figure 3. 26KB Image download
Figure 2. 32KB Image download
Figure 1. 2KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Phadtare S: Recent developments in bacterial cold-shock response. Cur Issues Mol Biol 2004, 6:125-136.
  • [2]Wouters JA, Rombouts FM, Kuipers OP, de Vos WM, Abee T: The role of cold-shock proteins in low-temperature adaptation of food-related bacteria. Syst Appl Microbiol 2000, 23:165-173.
  • [3]Ramos JL, Gallegos M-T, Marqués S, Ramos-González M-I, Espinosa-Urgel M, Segura A: Responses of Gram-negative bacteria to certain environmental stressors. Curr Opin Microbiol 2001, 4:166-171.
  • [4]Gualerzi CO, Giuliodori AM, Pon CL: Transcriptional and post-transcriptional control of cold-shock genes. J Mol Biol 2003, 331:527-539.
  • [5]Phadtare S, Alsina J, Inouye M: Cold-shock response and cold-shock proteins. Curr Opin Microbiol 1999, 2:175-180.
  • [6]Wickner S, Maurizi MR, Gottesman S: Posttranslational quality control: folding, refolding, and degrading proteins. Science 1999, 286:1888-1893.
  • [7]Gottesman S: Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol 2003, 19:565-587.
  • [8]Frees D, Qazi SN, Hill PJ, Ingmer H: Alternative roles of ClpX and ClpP inStaphylococcus aureusstress tolerance and virulence.Mol Microbiol 2003, 48:1565–1578.
  • [9]Robertson GT, Ng WL, Foley J, Gilmour R, Winkler ME: Global transcriptional analysis ofclpPmutations of type 2Streptococcus pneumoniaeand their effects on physiology and virulence.J Bacteriol 2002, 184:3508–3520.
  • [10]Porankiewicz J, Schelin J, Clarke AK: The ATP-dependent Clp protease is essential for acclimation to UV-B and low temperature in the cyanobacteriumSynechococcus.Mol Microbiol 1998, 29:275–283.
  • [11]Fedhila S, Msadek T, Nel P, Lereclus D: DistinctclpPgenes control specific adaptive responses inBacillus thuringiensis.J Bacteriol 2002, 184:5554–5562.
  • [12]Loughlin MF, Arandhara V, Okolie C, Aldsworth TG, Jensk PJ: Helicobacter pylorimutants defective in the clpP ATP-dependent protease and the chaperone clpA display reduced macrophage and murine survival.Microb Pathog 2009, 46:53–57.
  • [13]Knudsen GM, Olsen JE, Aabo S, Barrow P, Rychlik I, Thomsen LE: ClpP deletion causes attenuation ofSalmonellaTyphimurium through mis-regulation of RpoS and indirect control of CsrA and the SPI genes.Microbiology 2013, 159:1497–1509.
  • [14]Tomoyasu T, Ohkishi T, Ukyo Y, Tokumitsu A, Takya A, Suzuki M, Sekiya K, Matsui H, Kutsukake K, Yamamoto T: The ClpXP ATP-dependent protease regulates flagella synthesis inSalmonella entericaserovar Typhimurium.J Bacteriol 2002, 184:645–653.
  • [15]Jones TH, Murray A, Johns M, Gill CO, McMullen ML: Differential expression of proteins in cold-adapted log-phase cultures ofEscherichia coliincubated at 8, 6 or 2 degrees C.Int J Food Microbiol 2006, 107:12–19.
  • [16]Roberts JA, Cumberland P, Sockett PN, Wheeler J, Rodrigues LC, Sethi D, Roderick PJ: The study of infectious intestinal disease in England: socio-economic impact. Epidemiol Infect 2003, 130:1-11.
  • [17]Humphrey TJ: Salmonella, stress responses and food safety.Nat Rev Microbiol 2004, 2:504–509.
  • [18]Webb C, Moreno M, Wilmes-Riesenberg M, Curtiss R III, Foster JW: Effects of DksA and ClpP protease on sigma S production and virulence inSalmonella typhimurium.Mol Microbiol 1999, 34:112–123.
  • [19]Sledjeski DD, Gupta A, Gottesman S: The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth inEscherichia coli.EMBO J 1996, 15:3993–4000.
  • [20]McMeechan A, Roberts M, Cogan TA, Jørgensen F, Stevenson A, Lewis C, Rowley G, Humphrey TJ: Role of the alternative sigma factors RpoE and RpoS in survival ofSalmonella entericaserovar Typhimurium during starvation, refrigeration and osmotic shock.Microbiology 2007, 153:263–269.
  • [21]Liu S, Graham JE, Bigelow L, Morse PD, Wilkinson BJ: Identification ofListeria monocytogenesgenes expressed in response to growth at low temperature.Appl Environ Microbiol 2002, 68:1697–1705.
  • [22]Romeo T, Gong M, Liu MY, Brun-Zinkernagel AM: Identification and molecular characterization ofcsrA, a pleiotropic gene fromEscherichia colithat affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties.J Bacteriol 1993, 175:4744–4755.
  • [23]Yang H, Liu MY, Romeo T: Coordinate genetic regulation of glycogen catabolism and biosynthesis inEscherichia colivia the CsrA gene product.J Bacteriol 1996, 178:1012–1017.
  • [24]McMeechan A, Lovell MA, Cogan TA, Marston KL, Humphrey TJ, Barrow PA: Glycogen production by differentSalmonella entericaserotypes: contribution of functionalglgCto virulence, intestinal colonization and environmental survival.Microbiology 2005, 151:3969–3977.
  • [25]Romeo T: Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 1998, 29:1321-1330.
  • [26]Wei B, Shin S, LaPorte D, Wolfe AJ, Romeo T: Global regulatory mutations incsrAandrpoScause severe central carbon stress inEscherichia coliin the presence of acetate.J Bacteriol 2000, 182:1632–1640.
  • [27]Fortune DR, Suyemoto M, Altier C: Identification of CsrC and characterization of its role in epithelial cell invasion inSalmonella entericaserovar Typhimurium.Infect Immun 2006, 74:331–339.
  • [28]Fettes PS, Forsbach-Birk V, Lynch D, Marre R: Overexpresssion of aLegionella pneumophilahomologue of theE. coliregulatorcsrAaffects cell size, flagellation, and pigmentation.Int J Med Microbiol 2001, 291:353–360.
  • [29]Forsbach-Birk V, McNealy T, Shi C, Lynch D, Marre R: Reduced expression of the global regulator protein CsrA inLegionella pneumophilaaffects virulence-associated regulators and growth inAcanthamoeba castellanii.Int J Med Microbiol 2004, 294:15–25.
  • [30]Altier C, Suyemoto M, Lawhon SD: Regulation ofSalmonella entericaserovar Typhimurium invasion genes by csrA.Infect Immun 2000, 68:6790–6797.
  • [31]Martinez LC, Yakhnin H, Camacho MI, Georgellis D, Babitzke P, Puente JL, Bustamante VH: Integration of a complex regulatory cascade involving the SirA/BarA and Csr global regulatory systems that controls expression of theSalmonellaSPI-1 and SPI-2 virulence regulons through HilD.Mol Microbiol 2011, 80:1637–1656.
  • [32]Barnard FM, Loughlin MF, Fainberg HP, Messenger MP, Ussery DW, Williams P, Jenks PJ: Global regulation of virulence and the stress response by CsrA in the highly adapted human gastric pathogenHelicobacter pylori.Mol Microbiol 2004, 51:15–32.
  • [33]Mattick KL, Phillips LE, Jørgensen F, Lappin-Scott HM, Humphrey TJ: Filament formation bySalmonellaspp. inoculated into liquid food matrices at refrigeration temperatures, and growth patterns when warmed.J Food Prot 2003, 66:215–219.
  • [34]Phillips LE, Humphrey TJ, Lappin-Scott HM: Chilling invokes different morphologies in twoSalmonella enteritidisPT4 strains.J Appl Microbiol 1998, 84:820–826.
  • [35]Cam K, Cuzange A, Bouche JP: Sigma S-dependent overexpression offtsZin anEscherichia coliK-12rpoBmutant that is resistant to the division inhibitors DicB and DicF RNA.Mol Gen Genet 1995, 248:190–194.
  • [36]Flynn JM, Neher SB, Kim YI, Sauer RT, Baker TA: Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol Cell 2003, 11:671-683.
  • [37]Weart RB, Nakano S, Lane BE, Zuber P, Levin PA: The ClpX chaperone modulates assembly of the tubulin-like protein FtsZ. Mol Microbiol 2005, 57:238-249.
  • [38]Hormaeche CE: Natural resistance toSalmonella typhimuriumin different inbred mouse strains.Immunology 1979, 37:311–318.
  • [39]Thomsen LE, Olsen JE, Foster JW, Ingmer H: ClpP is involved in the stress response and degradation of misfolded proteins inSalmonella entericaserovar Typhimurium.Microbiology 2002, 148:2727–2733.
  • [40]Baranyi J, Roberts TA: A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol 1994, 23:277-294.
  • [41]Thomsen LE, Gottlieb CT, Gottschalk S, Wodskou TT, Kristensen HH, Gram L, Ingmer H: The heme sensing response regulator HssR inStaphylococcus aureusbut not the homologous RR23 inListeria monocytogenesmodulates susceptibility to the antimicrobial peptide plectasin.BMC Microbiol 2010, 10:307.
  • [42]Frees D, Sørensen K, Ingmer H: Global virulence regulation inStaphylococcus aureus: pinpointing the roles of ClpP and ClpX in thesar/agrregulatory network.Infect Immun 2005, 73:8100–8108.
  • [43]Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York; 1989.
  文献评价指标  
  下载次数:125次 浏览次数:40次