期刊论文详细信息
BMC Infectious Diseases
Nasal mucosal microRNA expression in children with respiratory syncytial virus infection
Britt Nakstad3  Hans O Fjærli2  Tonje Sonerud1  Christopher S Inchley3 
[1] Department of Clinical Molecular Biology and Laboratory Sciences (EpiGen), Akershus University Hospital, Lørenskog, 1478, Norway;Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, 1478, Norway;Institute of Clinical Medicine, University of Oslo, Oslo, 0316, Norway
关键词: Nasal mucosa;    Pediatric;    Children;    Bronchiolitis;    miR-155;    miR-429;    miR-125;    miR-34;    MicroRNA;    Respiratory syncytial virus;   
Others  :  1173935
DOI  :  10.1186/s12879-015-0878-z
 received in 2014-10-17, accepted in 2015-03-10,  发布年份 2015
PDF
【 摘 要 】

Background

Respiratory syncytial virus (RSV) infection is a common cause of pediatric hospitalization. microRNA, key regulators of the immune system, have not previously been investigated in respiratory specimens during viral infection. We investigated microRNA expression in the nasal mucosa of 42 RSV-positive infants, also comparing microRNA expression between disease severity subgroups.

Methods

Nasal mucosa cytology specimens were collected from RSV-positive infants and healthy controls. 32 microRNA were selected by microarray for qPCR verification in 19 control, 16 mild, 7 moderate and 19 severe disease samples.

Results

Compared to healthy controls, RSV-positive infants downregulated miR-34b, miR-34c, miR-125b, miR-29c, mir125a, miR-429 and miR-27b and upregulated miR-155, miR-31, miR-203a, miR-16 and let-7d. On disease subgroups analysis, miR-125a and miR-429 were downregulated in mild disease (p = 0.03 and 0.02, respectively), but not in severe disease (p = 0.3 and 0.3).

Conclusion

microRNA expression in nasal epithelium cytology brushings of RSV-positive infants shows a distinct profile of immune-associated miRNA. miR-125a has important functions within NF-κB signaling and macrophage function. The lack of downregulation of miR-125a and miR-429 in severe disease may help explain differences in disease manifestations on infection with RSV.

【 授权许可】

   
2015 Inchley et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150423022051966.pdf 1215KB PDF download
Figure 3. 64KB Image download
Figure 2. 112KB Image download
Figure 1. 113KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Glezen WP, Taber LH, Frank AL, Kasel JA: Risk of primary infection and reinfection with respiratory syncytial virus. Am J Dis Child 1986, 140(6):543-6.
  • [2]Fjaerli HO, Farstad T, Bratlid D: Hospitalisations for respiratory syncytial virus bronchiolitis in Akershus, Norway, 1993–2000: a population-based retrospective study. BMC Pediatr 2004, 4(1):25. BioMed Central Full Text
  • [3]Graham BS, Anderson LJ: Challenges and opportunities for respiratory syncytial virus vaccines. Curr Top Microbiol Immunol 2013, 372:391-404.
  • [4]de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J: Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 2007, 6(6):443-53.
  • [5]Montagner S, Orlandi EM, Merante S, Monticelli S: The role of miRNAs in mast cells and other innate immune cells. Immunol Rev 2013, 253(1):12-24.
  • [6]Mi QS, Xu YP, Wang H, Qi RQ, Dong Z, Zhou L: Deletion of microRNA miR-223 increases Langerhans cell cross-presentation. Int J Biochem Cell Biol 2013, 45(2):395-400.
  • [7]Bakre A, Mitchell P, Coleman JK, Jones LP, Saavedra G, Teng M, et al.: Respiratory syncytial virus modifies microRNAs regulating host genes that affect virus replication. J Gen Virol 2012, 93(Pt 11):2346-56.
  • [8]Othumpangat S, Walton C, Piedimonte G: MicroRNA-221 modulates RSV replication in human bronchial epithelium by targeting NGF expression. PLoS One 2012, 7(1):e30030.
  • [9]Thornburg NJ, Hayward SL, Crowe JE Jr: Respiratory syncytial virus regulates human microRNAs by using mechanisms involving beta interferon and NF-kappaB. mBio 2012, 3(6):e00220-12. doi:10.1128/mBio.00220-12
  • [10]Inchley CS, Sonerud T, Fjaerli HO, Nakstad B: Reduced Dicer expression in the cord blood of infants admitted with severe respiratory syncytial virus disease. BMC Infect Dis 2011, 11(1):59. BioMed Central Full Text
  • [11]Lowell DI, Lister G, Von Koss H, McCarthy P: Wheezing in infants: the response to epinephrine. Pediatrics 1987, 79(6):939-45.
  • [12]Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al.: NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res 2013, 41(Database issue):D991-5.
  • [13]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5(10):R80. BioMed Central Full Text
  • [14]Lopez-Romero P: Pre-processing and differential expression analysis of Agilent microRNA arrays using the AgiMicroRna Bioconductor library. BMC Genomics 2011, 12:64. BioMed Central Full Text
  • [15]Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3:1-25.
  • [16]Unlu S, Tang S, Wang E, Martinez I, Tang D, Bianchi ME, et al.: Damage associated molecular pattern molecule-induced microRNAs (DAMPmiRs) in human peripheral blood mononuclear cells. PLoS One 2012, 7(6):e38899.
  • [17]Takahashi N, Nakaoka T, Yamashita N: Profiling of immune-related microRNA expression in human cord blood and adult peripheral blood cells upon proinflammatory stimulation. Eur J Haematol 2012, 88(1):31-8.
  • [18]Wang Z, Filgueiras LR, Wang S, Serezani AP, Peters-Golden M, Jancar S, et al.: Leukotriene B4 enhances the generation of proinflammatory MicroRNAs to promote MyD88-dependent macrophage activation. J Immunol 2014, 192(5):2349-56.
  • [19]Kim SW, Ramasamy K, Bouamar H, Lin AP, Jiang D, Aguiar RC: MicroRNAs miR-125a and miR-125b constitutively activate the NF-kappaB pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20). Proc Natl Acad Sci U S A 2012, 109(20):7865-70.
  • [20]Chaudhuri AA, So AY, Sinha N, Gibson WS, Taganov KD, O’Connell RM, et al.: MicroRNA-125b potentiates macrophage activation. J Immunol 2011, 187(10):5062-8.
  • [21]Parlato S, Bruni R, Fragapane P, Salerno D, Marcantonio C, Borghi P, et al.: IFN-alpha regulates Blimp-1 expression via miR-23a and miR-125b in both monocytes-derived DC and pDC. PLoS One 2013, 8(8):e72833.
  • [22]Huang HC, Yu HR, Huang LT, Huang HC, Chen RF, Lin IC, et al.: miRNA-125b regulates TNF-alpha production in CD14+ neonatal monocytes via post-transcriptional regulation. J Leukoc Biol 2012, 92(1):171-82.
  • [23]Hsieh CH, Rau CS, Jeng JC, Chen YC, Lu TH, Wu CJ, et al.: Whole blood-derived microRNA signatures in mice exposed to lipopolysaccharides. J Biomed Sci 2012, 19:69. BioMed Central Full Text
  • [24]Zhou R, Li X, Hu G, Gong AY, Drescher KM, Chen XM: miR-16 targets transcriptional corepressor SMRT and modulates NF-kappaB-regulated transactivation of interleukin-8 gene. PLoS One 2012, 7(1):e30772.
  • [25]Wei J, Huang X, Zhang Z, Jia W, Zhao Z, Zhang Y, et al.: MyD88 as a target of microRNA-203 in regulation of lipopolysaccharide or Bacille Calmette-Guerin induced inflammatory response of macrophage RAW264.7 cells. Mol Immunol 2013, 55(3–4):303-9.
  • [26]Wang CM, Wang Y, Fan CG, Xu FF, Sun WS, Liu YG, et al.: miR-29c targets TNFAIP3, inhibits cell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma. Biochem Biophys Res Commun 2011, 411(3):586-92.
  • [27]Graff JW, Dickson AM, Clay G, McCaffrey AP, Wilson ME: Identifying functional microRNAs in macrophages with polarized phenotypes. J Biol Chem 2012, 287(26):21816-25.
  • [28]Li T, Morgan MJ, Choksi S, Zhang Y, Kim YS, Liu ZG: MicroRNAs modulate the noncanonical transcription factor NF-kappaB pathway by regulating expression of the kinase IKKalpha during macrophage differentiation. Nat Immunol 2010, 11(9):799-805.
  • [29]Oshansky CM, Zhang W, Moore E, Tripp RA: The host response and molecular pathogenesis associated with respiratory syncytial virus infection. Future Microbiol 2009, 4(3):279-97.
  • [30]Zhao X, Tang Y, Qu B, Cui H, Wang S, Wang L, et al.: MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthritis Rheum 2010, 62(11):3425-35.
  • [31]Lin Z, Wang X, Fewell C, Cameron J, Yin Q, Flemington EK: Differential expression of the miR-200 family microRNAs in epithelial and B cells and regulation of Epstein-Barr virus reactivation by the miR-200 family member miR-429. J Virol 2010, 84(15):7892-7.
  • [32]Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, et al.: Requirement of bic/microRNA-155 for normal immune function. Science 2007, 316(5824):608-11.
  • [33]O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D: Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci U S A 2009, 106(17):7113-8.
  • [34]Lu C, Huang X, Zhang X, Roensch K, Cao Q, Nakayama KI, et al.: miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1. Blood 2011, 117(16):4293-303.
  • [35]Song H, Wang Q, Guo Y, Liu S, Song R, Gao X, et al.: Microarray analysis of microRNA expression in peripheral blood mononuclear cells of critically ill patients with influenza A (H1N1). BMC Infect Dis 2013, 13:257. BioMed Central Full Text
  • [36]Zhu Z, Qi Y, Ge A, Zhu Y, Xu K, Ji H, et al.: Comprehensive characterization of serum MicroRNA profile in response to the emerging avian influenza A (H7N9) virus infection in humans. Virus 2014, 6(4):1525-39.
  • [37]Solberg OD, Ostrin EJ, Love MI, Peng JC, Bhakta NR, Hou L, et al.: Airway epithelial miRNA expression is altered in asthma. Am J Respir Crit Care Med 2012, 186(10):965-74.
  • [38]Jardim MJ, Dailey L, Silbajoris R, Diaz-Sanchez D: Distinct microRNA expression in human airway cells of asthmatic donors identifies a novel asthma-associated gene. Am J Respir Cell Mol Biol 2012, 47(4):536-42.
  • [39]Piedimonte G: Respiratory syncytial virus and asthma: speed-dating or long-term relationship? Curr Opin Pediatr 2013, 25(3):344-9.
  • [40]Kumar M, Ahmad T, Sharma A, Mabalirajan U, Kulshreshtha A, Agrawal A, et al.: Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation. J Allergy Clin Immunol 2011, 128(5):1077-85. e1071-1010
  • [41]Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006, 34(Database issue):D140-4.
  • [42]Zhang X, Guo J, Fan S, Li Y, Wei L, Yang X, et al.: Screening and identification of six serum microRNAs as novel potential combination biomarkers for pulmonary tuberculosis diagnosis. PLoS One 2013, 8(12):e81076.
  • [43]Guan Z, Shi N, Song Y, Zhang X, Zhang M, Duan M: Induction of the cellular microRNA-29c by influenza virus contributes to virus-mediated apoptosis through repression of antiapoptotic factors BCL2L2. Biochem Biophys Res Commun 2012, 425(3):662-7.
  • [44]Suarez Y, Wang C, Manes TD, Pober JS: Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation. J Immunol 2010, 184(1):21-5.
  • [45]Martinez-Nunez RT, Louafi F, Friedmann PS, Sanchez-Elsner T: MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN). J Biol Chem 2009, 284(24):16334-42.
  • [46]Panganiban RP, Pinkerton MH, Maru SY, Jefferson SJ, Roff AN, Ishmael FT: Differential microRNA epression in asthma and the role of miR-1248 in regulation of IL-5. Am JClin Exp Immunol 2012, 1(2):154-65.
  • [47]Cai ZG, Zhang SM, Zhang Y, Zhou YY, Wu HB, Xu XP: MicroRNAs are dynamically regulated and play an important role in LPS-induced lung injury. Can J Physiol Pharmacol 2012, 90(1):37-43.
  • [48]Wang H, Zhang P, Chen W, Feng D, Jia Y, Xie L: Serum microRNA signatures identified by Solexa sequencing predict sepsis patients’ mortality: a prospective observational study. PLoS One 2012, 7(6):e38885.
  • [49]Zhou R, Gong AY, Eischeid AN, Chen XM: miR-27b targets KSRP to coordinate TLR4-mediated epithelial defense against Cryptosporidium parvum infection. PLoS Pathog 2012, 8(5):e1002702.
  • [50]Zhou R, Hu G, Gong AY, Chen XM: Binding of NF-kappaB p65 subunit to the promoter elements is involved in LPS-induced transactivation of miRNA genes in human biliary epithelial cells. Nucleic Acids Res 2010, 38(10):3222-32.
  • [51]Banerjee S, Cui H, Xie N, Tan Z, Yang S, Icyuz M, et al.: miR-125a-5p regulates differential activation of macrophages and inflammation. J Biol Chem 2013, 288(49):35428-36.
  • [52]Zhang XH, Zhang YN, Li HB, Hu CY, Wang N, Cao PP, et al.: Overexpression of miR-125b, a novel regulator of innate immunity, in eosinophilic chronic rhinosinusitis with nasal polyps. Am J Respir Crit Care Med 2012, 185(2):140-51.
  • [53]Rossi RL, Rossetti G, Wenandy L, Curti S, Ripamonti A, Bonnal RJ, et al.: Distinct microRNA signatures in human lymphocyte subsets and enforcement of the naive state in CD4+ T cells by the microRNA miR-125b. Nat Immunol 2011, 12(8):796-803.
  • [54]Primo MN, Bak RO, Schibler B, Mikkelsen JG: Regulation of pro-inflammatory cytokines TNFalpha and IL24 by microRNA-203 in primary keratinocytes. Cytokine 2012, 60(3):741-8.
  文献评价指标  
  下载次数:7次 浏览次数:1次